Steampunk quantum

A dark-haired man leans over a marble balustrade. In the ballroom below, his assistants tinker with animatronic elephants that trumpet and with potions for improving black-and-white photographs. The man is an inventor near the turn of the 20th century. Cape swirling about him, he watches technology wed fantasy.

Welcome to the steampunk genre. A stew of science fiction and Victorianism, steampunk has invaded literature, film, and the Wall Street Journal. A few years after James Watt improved the steam engine, protagonists build animatronics, clone cats, and time-travel. At sci-fi conventions, top hats and blast goggles distinguish steampunkers from superheroes.


The closest the author has come to dressing steampunk.

I’ve never read steampunk other than H. G. Wells’s The Time Machine—and other than the scene recapped above. The scene features in The Wolsenberg Clock, a novel by Canadian poet Jay Ruzesky. The novel caught my eye at an Ontario library.

In Ontario, I began researching the intersection of QI with thermodynamics. Thermodynamics is the study of energy, efficiency, and entropy. Entropy quantifies uncertainty about a system’s small-scale properties, given large-scale properties. Consider a room of air molecules. Knowing that the room has a temperature of 75°F, you don’t know whether some molecule is skimming the floor, poking you in the eye, or elsewhere. Ambiguities in molecules’ positions and momenta endow the gas with entropy. Whereas entropy suggests lack of control, work is energy that accomplishes tasks.

Thermodynamics sprouted from the Industrial Revolution. Not content with inventing locomotives and factories, engineers wanted to improve efficiencies. How much heat does an engine waste, they asked, while burning fuel? How high can the engine’s work-to-waste ratio rise?

During the 20th century, information invaded thermodynamics. Leó Szilárd showed that we can “spend” information on work: If you know molecules’ positions, you can lift a weight while sacrificing that knowledge. Reversing the process, Rolf Landauer wrote, amounts to erasure: Deleting information costs work.

As technology shrinks, work and information couple in smaller and smaller systems. The spotlight has swept from trains to nanoscale engines, living cells’ molecular motors, and the smallest possible refrigerators. Not only roomfuls of molecules, but also single particles, need analyzing. Having partnered with information theory, thermodynamics must partner with quantum theory.

So I learned in Ontario. As I bustled from library to office, head full of Szilárd and Ruzesky, the two colluded. The penny dropped.

Or—since it sounds Victorian—the shilling.

Thermodynamic quantum information is steampunk.

Like steampunk storylines, thermodynamics matured when lamps burned gas and Charles Dickens burned midnight oil. Like thermo QI, steampunk involves the romanticism of a bygone age, the thrill of cutting-edge technology, and the fundamental natures of energy and information. Falling into thermo QI, I learned why steampunkers fall for stories like Lord Kelvin’s Machine. Doing QI, I do what people fantasize about. Apart from cloning cats.

Perhaps I should attend QI conferences in a hoop skirt and bustle. Would a corset hinder a presentation? Would a steampunk social night fly? On the other hand, theoretical physics needs no hoop skirts to be steampunk. It needs no goggles beyond bifocals, no stovepipes beyond thinking caps. Like physics, novels involve thought experiments. Like novels, physics transports us to the 1800s, into a train, and into living cells—without our leaving our desks.

For different steampunk physics, see Charles Day’s blog for Physics Today.

For technical primers on thermo QI, stay tuned. Noteworthy results appear here, here, here, and in many other publications.

2017-01-13T10:05:51+00:00 August 11th, 2013|Reflections, Theoretical highlights|7 Comments


  1. ychen August 14, 2013 at 4:52 am - Reply

    The understanding in entropy as a measure of the uncertainty in the small scales, and the connection of QI and thermodynamics (entropy) – by exploring smaller systems as time goes by – are interesting. Inspiring comment on the magic of the theoretical physicist – riding the time machine without leaving our desks. Btw, is that photo really you? So cute 🙂

    • Nicole Yunger Halpern August 14, 2013 at 7:24 am - Reply

      Thanks! I’m glad you liked the article and the enchantment-of-theory idea. It’s one of the reasons why I’m doing theoretical physics.

      Yes, the photo is of me around age six. Thank you; my mother agrees. 🙂

  2. […] electrons and information with a Victorian fixation on energy and engines. This research program, quantum thermodynamics, should open a window onto our […]

  3. […] transferred and work performed on small scales. One framework, one-shot statistical mechanics, has guest-starred on this blog. The other framework consists of fluctuation-dissipation relations. Fluctuation relations […]

  4. […] QI has shed light on statistical mechanics and thermodynamics, which describe energy, information, and efficiency. Models called resource theories describe small systems’ energies, information, and efficiencies. Resource theories help us calculate a quantum system’s value—what you can and can’t create from a quantum system—if you can manipulate systems in only certain ways. […]

  5. […] do. The first time I saw the picture above, I saw a variation on “Peter.” I was reading (when do I not?) about the intersection of quantum information and thermodynamics. The authors were […]

  6. […] of systems that contain vast numbers of particles, like the air we breathe and white dwarf stars. I harp on about statistical mechanics […]

Leave A Comment