Topological Quantum Computing: Progress & Opportunities

Jason Alicea

INSTITUTE FOR QUANTUM INFORMATION AND MATTER

Feynman 1982: quantum computing visionary

Feynman 1982: quantum computing visionary

Feynman 1982: quantum computing visionary

Quantum information tends to be fragile

$|00\rangle + |11\rangle$

Quantum information tends to be fragile

 $\begin{array}{c} |00\rangle + |11\rangle \\ \swarrow \\ |00\rangle + e^{i\alpha}|11\rangle \\ \\ \begin{array}{c} \text{random} \\ \text{phase} \end{array} \end{array}$

Quantum information tends to be fragile

A (three) million dollar idea

Kitaev 1997: topological quantum computing pioneer

Encode & process qubits w/ (non-Abelian) anyons hardware immune to environmental noise!

A (three) million dollar idea

2012 Fundamental physics prize recipient!

Kitaev 1997: **topological** quantum computing pioneer

Encode & process qubits w/ (non-Abelian) anyons hardware immune to environmental noise!

•

I. Exponentially many quantum states w/ same energy $\sim 2^{\frac{\# \ \mathrm{anyons}}{2}}$

2."Braiding" transforms qubits

2."Braiding" transforms qubits

2."Braiding" transforms qubits

2."Braiding" transforms qubits

Billion \$ question: How do you build the hardware?

semiconducting wire +

Lutchyn, Sau, Das Sarma; Oreg, Refael, von Oppen (2010)

superconductor +

Lutchyn, Sau, Das Sarma; Oreg, Refael, von Oppen (2010)

magnetic field

Lutchyn, Sau, Das Sarma; Oreg, Refael, von Oppen (2010)

CORE 17

RE 17 PROCESSOR ed & Unleashed LGA1155

Engineering

"Majorana modes" ~ half an electron state

Materials science breakthrough...

Nadj-Perge, Bernevig, Yazdani, et al.

Iron atoms

Superconductor

Compelling Majorana-mode evidence seen in these devices (and more)!

Lots of excitement...

Compelling Majorana-mode evidence seen in these devices (and more)!

Lots of excitement...

....sometimes too much

- SCIENCE http://www.gizmag.com/majorana-fermions-detected/22241/

Majorana fermions – the answer to Life, the Universe, and Everything?

APRIL 27, 2012

Compelling Majorana-mode evidence seen in these devices (and more)!

Lots of excitement...

...sometimes too much

- SCIENCE http://www.gizmag.com/majorana-fermions-detected/22241/

Majorana fermions – the answer to Life, the Universe, and Everything?

▲ DARIO BORGHINO ④ APRIL 27, 2012

Topological Quantum Computing: Progress & Opportunities

Topological Quantum Computing: Progress & Opportunities

Synthesis & Characterization

Synthesis & Characterization

Aasen, Hell, Mishmash, Higginbotham, Danon, Leijnse, Jespersen, Folk, Marcus, Flensberg, JA, arXiv:1511.05153

Nontrivial fusion

Nontrivial Prototype topological qubit fusion |0 angle, |1 angle

Nontrivial fusion

Prototype topological qubit

How quickly can anyons be braided? Or: How I learned to stop worrying about diabatic errors and love the anyon

Christina Knapp,¹ Michael Zaletel,² Dong E. Liu,² Meng Cheng,² Parsa Bonderson,² and Chetan Nayak^{2,1}

¹Physics Department, University of California, Santa Barbara, California 93106, USA ²Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA

NontrivialPrototypefusiontopological qubit

Anyon braiding

How quickly can anyons be braided? Or: How I learned to stop worrying about diabatic errors and love the anyon

Christina Knapp,¹ Michael Zaletel,² Dong E. Liu,² Meng Cheng,² Parsa Bonderson,² and Chetan Nayak^{2,1}

¹Physics Department, University of California, Santa Barbara, California 93106, USA ²Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA

|0 angle ightarrow |0 angle + i|1 angle

Together, these experiments reveal the essential "DNA" of anyons

NontrivialPrototypefusiontopological qubit

Anyon braiding

How quickly can anyons be braided? Or: How I learned to stop worrying about diabatic errors and love the anyon

Christina Knapp,¹ Michael Zaletel,² Dong E. Liu,² Meng Cheng,² Parsa Bonderson,² and Chetan Nayak^{2,1}

¹Physics Department, University of California, Santa Barbara, California 93106, USA ²Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA

Together, these experiments reveal the essential "DNA" of anyons

Love the anyon

On horizon (?):

Verifying basic tenets of topological quantum computing...

...AND demonstrating new fundamental aspects of quantum mechanics