
Quantum and classical information processing with tensors

Caltech: ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp

Abstract

We approach important concepts in quantum and classical information process-
ing from a tensor perspective. We establish a rigorous mathematical framework for
tensor calculus and introduce a versatile graphical formalism – wiring diagrams.
Subsequently, we apply these ideas to a variety of timely topics.

These lecture notes accompany ACM 270-1 at Caltech (spring 2019) – a special
topics course aimed at mathematically inclined students from physics, math, com-
puter science and electrical engineering. No quantum background is required, but
familiarity with linear algebra is essential.

Contents

1 Lecture notes 1
1.1 Classical probability theory and quantum mechanics 1
1.2 Tensor products . 10
1.3 Wiring calculus and entanglement . 18
1.4 Symmetric and antisymmetric tensors 28
1.5 Haar integration . 36
1.6 Entanglement is ubiquitous . 44
1.7 Classical reversible circuits . 53
1.8 Quantum circuits and quantum computing 61
1.9 Matrix rank . 71
1.10 Tensor rank . 77
1.11 Strassen’s algorithm for matrix multiplication 86
1.12 Tensorial aspects of matrix multiplication 93
1.13 The CP decomposition for tensors . 101
1.14 The Tucker decomposition for tensors 112
1.15 Tensor train decompositions I . 120
1.16 Tensor train decomposition II . 128
1.17 Tensor train algorithms (DMRG lite) . 137

2 Exercises 146
2.1 Homework I . 146
2.2 Homework II . 151
2.3 Homework III . 156

Lecture 01: Classical probability theory and quantum
mechanics

Scribe: Florian Schäfer

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
April 1, 2019

1 Agenda
1. Linear and semidefinite programming
2. Classical (discrete) probability theory
3. Postulates of quantum mechanics
4. Distinguishing classical probability distributions and the maximum likelihood rule
5. Distinguishing quantum distributions and the Holevo-Helstrom Theorem

2 Linear and semidefinite programming
In the first lecture we will show that the difference between classical probability theory
and quantum mechanics is a direct analogue of the difference between linear– and
semidefinite programming. We begin by introducing the latter two concepts.
2.1 Linear programming

We endow the space R𝑑 with the standard inner product

⟨𝑥, 𝑦⟩ =
𝑑∑︁

𝑖=1
𝑥𝑖𝑦𝑖

and define the non-negative orthant

R𝑑
+ = {𝑥 ∈ R𝑑 : 𝑥𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑑}.

This induces a partial order on R𝑑 given by

𝑥 ≥ 𝑦 ⇔ 𝑥 − 𝑦 ∈ R𝑑
+ ⇔ 𝑥𝑖 ≥ 𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑑.

A linear program (LP) is an optimization problem of the following form:

maximize
𝑥∈R𝑑

⟨𝑎, 𝑥⟩

subject to ⟨𝑏𝑖, 𝑥⟩⟩ = 𝑐𝑖 1 ≤ 𝑖 ≤ 𝑚,

𝑥 ≥ 0.

The vectors 𝑎, 𝑏1, . . . , 𝑏𝑚 ∈ R𝑚 and numbers 𝑐1, . . . , 𝑐𝑚 ∈ R completely specify the
problem. Problems of this form can be solved efficiently. Linear programming is a
powerful technique from both an analytical and computational point of view.

2

2.2 Semidefinite programming

We denote the space of 𝑑 × 𝑑 hermitian matrices as H𝑑 = {𝑋 ∈ C𝑑×𝑑 : 𝑋* = 𝑋} and
endow it with the Frobenius (or Hilbert-Schmidt) inner product

(𝑋, 𝑌) = tr(𝑋𝑌).

Remark 2.1. We note that while members of H𝑑 can have complex entries, H𝑑 is not
closed under multiplication with complex numbers and thus forms a 𝑑2-dimensional
vectorspace over the real numbers.

A matrix 𝑋 ∈ H𝑑 is positive semidefinite (p.s.d.), if ⟨𝑥, 𝑋𝑥⟩ ≥ 0 for all 𝑥 ∈ C𝑑.
The set of psd matrices H𝑑

+ ⊂ H𝑑 forms a convex cone (H𝑑 is closed under convex
mixtures and mutliplication with non-negative scalars). This cone induces the following
partial ordering on H𝑑:

𝑋 ⪰ 𝑌 ⇔ 𝑋 − 𝑌 ∈ H𝑑
+.

We succinctly write 𝑋 ⪰ 0 to indicate that 𝑋 ∈ H𝑑 is psd.
A semidefinite program (SDP) is an optimization program of the following form

maximize
𝑋∈H𝑑

(𝐴, 𝑋)

subject to (𝐵𝑖, 𝑋) = 𝑐𝑖 1 ≤ 𝑖 ≤ 𝑚,

𝑋 ⪰ 0.

This optimization is completely specified by the matrices 𝐴, 𝐵1, . . . , 𝐵𝑚 ∈ H𝑑 and 𝑚
numbers 𝑐1, . . . , 𝑐𝑚 ∈ R.

Like LPs, SDPs are very useful both in theory and practice. We note that LPs and
SDPs arose in totally analogous ways from the triples (R𝑛, ⟨·, ·⟩, ≥) and (H𝑑, (·, ·), ⪰).
We will now show that the difference between classical probability theory and quantum
mechanics can equally be understood as replacing the former, with the latter triple.

3 Classical, discrete probability theory
Probability theory is modeled by probability triples consisting of a sample space (which
contains all potential outcomes), a set of events (to which we might want to assign
probabilities), and a probability rule (assigning a probability to each and every event).
In the setting of discrete probability theory, the set of all possible outcomes is finite
(|Ω| = 𝑑). In this case, we can simply choose the power set of Ω as the set of events
and correspondingly, the probability triple is fully characterized by a probability density
vector that assigns a probability to each outcome in Ω. Let 1 = (1, . . . , 1)𝑇 denote the
all-ones vector in R𝑑

Definition 3.1 (probability density). A probability density vector is a vector

𝑝 =

⎛
⎜⎝

𝑝1
...

𝑝𝑑

⎞
⎟⎠ ∈ R𝑑 : 𝑝 ≥ 0, ⟨1, 𝑝⟩ =

𝑑∑︁

𝑖=1
𝑝𝑖 = 1.

3

Probability theory is concerned with characterizing the likelihood of events or,
equivalently, the distribution of measurement outcomes.

Definition 3.2 (measurement). Measurements are resolutions of the identity (vector):

{ℎ𝑎 : 𝑎 ∈ 𝐴} ⊂ R𝑑 : ℎ𝑎 ≥ 0, 𝑎 ∈ 𝐴 and
∑︁

𝑎∈𝐴

ℎ𝑎 = 1.

Here, 𝐴 is a (finite) set of potential measurement outcomes.

We still need a final ingredient to describe how probability densities (as vectors in
R𝑑) and measurements {ℎ𝑎 : 𝑎 ∈ 𝐴} relate to the probability of different measurement
outcomes.

Definition 3.3 (probability rule). For a probability density 𝑝 ∈ R𝑑 and a measurement
{ℎ𝑎 : 𝑎 ∈ 𝐴} ⊂ R𝑑 define the probability rule

Pr[𝑎|𝑝] = ⟨ℎ𝑎, 𝑝⟩, for all 𝑎 ∈ 𝐴.

This assigns a probability to each possible outcome 𝑎 of the measurement.

Example 3.4 (Fair dice roll). The probability density of a fair dice roll is a flat distribution
over 6 potential events: 𝑝 = 1

61 ∈ R6. Suppose that we wish to test whether a single
dice roll results in either, {1, 2}, {3, 4}, or {5, 6}. This measurement may be associated
with the following resolution of identity:

ℎ{1,2} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, ℎ{3,4} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, ℎ{5,6} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

The probability rule then readily implies:

Pr[{1, 2}|𝑝] = Pr[{3, 4}|𝑝] = Pr[{5, 6}|𝑝] = 1
3 .

We introduce the probability simplex in R𝑑,

Δ𝑑−1 :=
{︁

𝑥 ∈ R𝑑 : 𝑥 ≥ 0, ⟨1, 𝑥⟩ = 1
}︁

,

and observe that it equal to the convex hull of the standard basis vectors 𝑒1 =
(1, 0, . . . , 0)𝑇 , . . . , 𝑒𝑑 = (0, . . . , 0, 1)𝑇 :

Δ𝑑−1 = conv{𝑒1, . . . , 𝑒𝑑}.

Definition 3.5. A probability distribution 𝑝 ∈ Δ𝑑−1 is called pure, if it is an extreme
point of Δ𝑑−1. This is the case if and only if the probability distribution is deterministic.

The essential concepts of classical probability theory are summarized in Table 1

4

Concept Explanation Mathematical formulation
probability density normalized, non-negative vectors 𝑝 ∈ R𝑑 𝑝 ≥ 0, ⟨1, 𝑝⟩ = 1
measurement resolution of the identity {ℎ𝑎 : 𝑎 ∈ 𝐴} ℎ𝑎 ≥ 0, ∑︀𝑎∈𝐴 ℎ𝑎 = 1
probability rule standard inner product Pr[𝑎|𝑝] = ⟨ℎ𝑎, 𝑝⟩

Table 1 Axioms for classical probability theory: The structure of discrete probability theory
is captured by the following geometric configuration: R𝑑 endowed with the partial order ≥
and the identity element 1 = (1, . . . , 1)𝑇 . This closely resembles linear programming.

4 Quantum Mechanics
The postulates of quantum mechanics naturally arise from an extension of classical
probability theory. Replace the triple

(︁
R𝑑, ≥, 1

)︁
, by the triple

(︁
H𝑑, ⪰, I

)︁
.

The analogous object to a probability density vector is a probability density matrix.

Definition 4.1 (density matrix). The state of a 𝑑-dimensional quantum mechanical system
is fully described by a density matrix

𝜌 ∈ H𝑑 : 𝜌 ⪰ 0, (I, 𝜌) = tr(𝜌) = 1.

In analogy to measurements in classical probability theory, we define a quantum
measurement as follows.

Definition 4.2 (measurement). A measurement is a resolution of the identity (matrix):

{𝐻𝑎 : 𝑎 ∈ 𝐴} : 𝐻𝑎 ⪰ 0, 𝑎 ∈ 𝐴,
∑︁

𝑎∈𝐴

𝐻𝑎 = I.

If a measurement {𝐻𝑎, 𝑎 ∈ 𝐴} is performed on a quantum mechanical system with
density matrix 𝜌, the following two things happen.

1. (Born’s rule) We obtain a random measurement outcome that is distributed
according to

P[𝑎|𝜌] = (𝐻𝑎, 𝜌).

2. The quantum system ceases to exist.

The fundamental axioms of quantum mechanics are a straightforward generalization
of classical probability theory, see Table 2. The transition from classical to quantum
probability theory resembles a transition from linear to semidefinite programming.

Example 4.3 (Stern-Gerlach experiment). Fix 𝑑 = 2 (single “spin”) and consider the density
matrix

𝜌 =
(︃

1 0
0 0

)︃

5

Concept Explanation Mathematical formulation
Probability density normalized, psd matrix 𝜌 ∈ H𝑑 𝜌 ⪰ 0, (I, 𝜌) = 1
measurement resolution of the identity {𝐻𝑎 : 𝑎 ∈ 𝐴} 𝐻𝑎 ⪰ 0, ∑︀𝑎∈𝐴 𝐻𝑎 = I
probability rule standard inner product Pr[𝑎|𝜌] = (𝐻𝑎, 𝜌)

Table 2 Axioms for quantum mechanics: The structure of quantum mechanics is captured by
the following geometric configuration: H𝑑 endowed with the psd order ⪰ and the identity
matrix I. This closely resembles semidefinite programming.

and two distinct potential measurements:

{︁
𝐻

(𝑧)
±
}︁

=
{︃

1
2I ± 1

2

(︃
1 0
0 −1

)︃}︃
=
{︃(︃

1 0
0 0

)︃
,

(︃
0 0
0 1

)︃}︃
,

{︁
𝐻

(𝑥)
±
}︁

=
{︃

1
2I ± 1

2

(︃
0 1
1 0

)︃}︃
=
{︃

1
2

(︃
1 1
1 1

)︃
,
1
2

(︃
1 −1

−1 1

)︃}︃
.

The resulting probabilities are then given by

P[+, (𝑧)|𝜌] =
(︃(︃

1 0
0 1

)︃
,

(︃
1 0
0 0

)︃)︃
= 1,

P[−, (𝑧)|𝜌] = 0,

P[+, (𝑥)|𝜌] =
(︃

1
2

(︃
1 1
1 1

)︃
,

(︃
1 0
0 0

)︃)︃
= 1

2 ,

P[−, (𝑥)|𝜌] = 1
2 .

This may seem surprising. The state 𝜌 provides completely deterministic measurement
outcomes for

{︁
𝐻

(𝑧)
±
}︁

. Yet, the outcomes for
{︁

𝐻
(𝑥)
±
}︁

are completely random. This
interesting feature of quantum mechanics is the basis of the famous Stern-Gerlach
experiment (1923).

The union of all possible quantum states form a convex set in H𝑑:

S
(︁
H𝑑
)︁

=
{︁

𝑋 ∈ H𝑑 : 𝑋 ⪰ 0, (I, 𝑋) = tr(𝑋) = 1
}︁

.

This is the quantum analogue of the standard simplex.

Definition 4.4. A density matrix 𝜌 ∈ S(H𝑑) is called pure if it has rank-one, i.e. 𝜌 = 𝑥𝑥*

with 𝑥 ∈ C𝑑 normalized to unit Euclidean length.

Pure quantum states correspond to extreme points of the convex set S(H𝑑) and one
can show

S(H𝑑) = conv
{︁

𝑥𝑥* : 𝑥 ∈ C𝑑, ⟨𝑥, 𝑥⟩ = 1
}︁

.

6

This is the quantum version of the decomposition of the standard simplex into the
convex hull of its extreme points: Δ𝑑−1 = conv{𝑒1, . . . , 𝑒𝑑}. Classical density vectors
are extreme if and only if they are one-sparse, i.e. only one component is different from
zero. Quantum density matrices are extreme if and only if they have rank-one. This
is the natural matrix generalization of sparsity: a rank-one matrix is one-sparse in its
eigenbasis.

In contrast to pure density vectors (classical), pure density matrices (quantum) are
not necessarily deterministic. We have encountered this feature in Example 4.3.

5 Applications: Maximum likelihood rule and Holevo-Helström-theorem
In the last two sections we have illustrated the common structure of classical probability
theory and quantum mechanics. Extending these parallels, we will now show the
optimality of the maximum likelihood rule, and the Holevo-Helström theorem.

Both address the task of distinguishing two probability densities in the single-shot
limit.
5.1 Distinguishing classical probability distributions and the maximum likelihood

rule

Suppose that we perfectly know descriptions of two probability distributions 𝑝, 𝑞 ∈ R𝑑

and choose to play the following game: a referee chooses one of these distributions
uniformly at random and hands it to us. We are allowed to perform a single measurement
and – based on its outcome – we must guess which probability distribution was handed
to us. We win the game if the guess was correct, otherwise we lose.

Let us now try to come up with an optimal guessing strategy. Since we are faced
with a binary question, our decision should take the form of a binary measurement:

{ℎ𝑝, ℎ𝑞} : ℎ𝑞 = 1 − ℎ𝑝 and 1 ⪰ ℎ𝑝 ⪰ 0.

A brief computation yields the following probability of guessing the distribution correctly,
based on this binary measurement: A brief computation yields

𝑝succ =1
2Pr[𝑝|𝑝] + 1

2Pr[𝑞|𝑞] = 1
2(⟨ℎ𝑝, 𝑝⟩ + ⟨ℎ𝑞, 𝑞⟩)

=1
2(⟨ℎ𝑝, 𝑝⟩ + ⟨1, 𝑞⟩ − ⟨ℎ𝑝, 𝑞⟩)

=1
2 + 1

2⟨ℎ𝑝, 𝑝 − 𝑞⟩

We may rewrite the inner-product in the last line as ∑︀𝑑
𝑖=1[ℎ𝑝]𝑖([𝑝]𝑖 − [𝑞]𝐼). The factor

1/2 in front of the expression should not be surprising: we can always achieve a success
probability of 1/2 by mere guessing. Optimizing over measurements {ℎ𝑝, ℎ𝑞} allows us
to further improve upon this basic strategy. This optimization problem assumes the
form of a linear program:

maximize
ℎ𝑝∈R𝑑

1
2 + 1

2⟨𝑝 − 𝑞, ℎ𝑝⟩

subject to 1 ≥ ℎ𝑝 ≥ 0.

7

This linear program is simple enough to solve it analytically. The optimal measurement
is

[︁
ℎ♯

𝑝

]︁
𝑖

=
{︃

1, if 𝑝𝑖 > 𝑞𝑖

0, else.
for 1 ≤ 𝑖 ≤ 𝑑.

The associated guessing strategy is called the maximum likelihood rule: upon observing
measurement outcome 𝑖, we guess 𝑝 if [𝑝]𝑖 ≥ [𝑞]𝑖 and otherwise 𝑞. In words: we choose
the distribution that is most likely to provide the outcome that we observed.

The associated optimal success probability is

𝑝♯
succ = 1

2 + 1
2⟨ℎ𝑝, 𝑝 − 𝑞⟩ = 1

2 + 1
4

𝑑∑︁

𝑖=1
|𝑝𝑖 − 𝑞𝑖| = 1

2 + 1
4‖𝑝 − 𝑞‖ℓ1

and the bias – the amount by which we improve over the naive guessing strategy – is
proportional to the total variational distance 1

2‖𝑝 − 𝑞‖ℓ1 of the distributions.
5.2 Distinguishing quantum states and the Holevo-Helstrom Theorem
Let us now consider the analogous problem in the quantum setting. A referee hands us
a black box that contains one of two quantum states: 𝜌 or 𝜎. Assume that we know
the density matrices associated with both states and the referee chooses each of them
with equal probability.

Similarly to before, we are allowed to perform a single quantum measurement to
guess which state we obtained. Note that this single-shot limit is very appropriate here.
A quantum measurement necessarily destroys the quantum state.

Again, we can base our guessing rule on a two-outcome measurement (the question
is binary):

𝐻𝜌, 𝐻𝜎 = I − 𝐻𝜌.

If we observe 𝜌, we guess 𝜌, otherwise we guess 𝜎. In analogy to the last section, we
compute the success probability associated with such a guessing strategy:

𝑝succ =1
2Pr[𝐻𝜌|𝜌] + 1

2Pr[𝐻𝜎|𝜎] = 1
2(𝐻𝜌, 𝜌) + 1

2(𝐻𝜎, 𝜎)

=1
2((𝐻𝜌, 𝜌) + (I, 𝜌) − (𝐻𝜌, 𝜎))

=1
2 + 1

2(𝐻𝜌, 𝜌 − 𝜎)

Next, we optimize this expression over all possible choices of measurements:

maximize
𝐻𝜌∈H𝑑

1
2 + 1

2(𝐻𝜌, 𝜌 − 𝜎)

subject to I ⪰ 𝐻𝜌 ⪰ 0.

This is a semidefinite program that is simple enough to solve analytically. Apply an
eigenvalue decomposition to 𝑋 = 𝜌 − 𝜎 = ∑︀𝑑

𝑖=1 𝜉𝑖𝑥𝑖𝑥
*
𝑖 . Set 𝑃+ = ∑︀𝑑

𝑖=1 I{𝜉𝑖 > 0}𝑥𝑖𝑥
*
𝑖

and 𝑃− = ∑︀𝑑
𝑖=1 I{𝜉 < 0}𝑥𝑖𝑥

*
𝑖 . These are orthogonal projectors onto the positive- and

8

negative ranges of 𝑋 = 𝜌 − 𝜎. They are the natural generalizations of the maximum
likelihood rule to the quantum setting. In particular, the choice 𝐻♯

𝑝 = 𝑃+ is optimal
and results in the following optimal success probability:

𝑝♯
succ = 1

2 + 1
4‖𝜌 − 𝜎‖*

Here, ‖ ·‖* denotes the nuclear (or trace) norm. It is the natural quantum generalization
of the total variational distance.

Theorem 5.1 (Holevo-Helstrom). The optimal success probability for distinguishing two
quantum states 𝜌, 𝜎 ∈ H𝑑 with a single measurement is

𝑝♯
succ = 1

2 + 1
4‖𝜌 − 𝜎‖1.

The optimal measurement is the projector onto the positive range of 𝜌 − 𝜎 and depends
on the states in question.

This observation dates back to Holevo1 (1973) and Helstrom (1976) and plays a
prominent role in modern quantum information theory. For instance, when estimating
density matrices from experimental observations, error bars are typically reported in
the nuclear norm.

1Alexander Holevo received the Claude E. Shannon Award in 2016 for his outstanding contributions
to quantum information theory.

Lecture 02: Tensor products
Scribe: Chung-Yi Lin

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
April 03, 2017

1 Agenda
1. Natural axioms for vector multiplication
2. Bipartite tensor product spaces 𝐻⊗2

3. Operators on 𝐻⊗2

4. Multi-partite tensor product spaces 𝐻⊗𝑘

5. Operators on 𝐻⊗𝑘

2 Axiomatic approach to vector products
2.1 Natural axioms for vector multiplication
Tensor products are motivated by the following basic and natural question: What does
it mean to multiply vectors?

In order to answer this question, we turn to scalar multiplication for guidance. Let
F be a field, e.g. R or C. Then, the scalar product is additive, homogeneous, has a
zero-element and is faithful, as well as symmetric. We refer to Definition 2.1 for a
precise definition of these properties.

Now, let 𝐻 be a 𝑑-dimensional inner product space over F = R, or F = C, equipped
with an inner product1

⟨𝑥, 𝑦⟩ =
𝑛∑︁

𝑖=1
�̄�𝑖𝑦𝑖 for 𝑥, 𝑦 ∈ 𝐻.

Based on our intuition about scalar multiplication, we postulate the following “natural”
set of properties.

Definition 2.1 (Axioms for vector multiplication). A well-defined product 𝑥 ⊗ 𝑦 of vectors
𝑥, 𝑦 ∈ 𝐻 should obey the following properties:

1. Additivity: for all 𝑥, 𝑦, 𝑧 ∈ 𝐻:

(𝑥 + 𝑦) ⊗ 𝑧 = 𝑥 ⊗ 𝑧 + 𝑦 ⊗ 𝑧 and 𝑥 ⊗ (𝑦 + 𝑧) = 𝑥 ⊗ 𝑦 + 𝑥 ⊗ 𝑧.

2. Homogeneity: for all 𝑥, 𝑦 ∈ 𝐻 and 𝛼 ∈ F:

𝛼(𝑥 ⊗ 𝑦) = (𝛼𝑥) ⊗ 𝑦 = 𝑥 ⊗ (𝛼𝑦).
1In contrast to widespread mathematical convention, we define the inner product to be linear in the

second argument. This convention will considerably simplify analysis throughout the course of these
lectures.

2

3. Zero property of multiplication: Let 0 ∈ 𝐻 denote the zero element. Then for all
𝑥, 𝑦 ∈ 𝐻,

𝑥 ⊗ 0 = 0 ⊗ 𝑦 = 0.

4. Faithfulness: If 𝑥 ⊗ 𝑦 = 0, then either 𝑥 = 0, or 𝑦 = 0.
These axioms naturally generalize to multiplication of more than two vectors.
Remark 2.2. Note that we have excluded symmetry from this list. A symmetric vector
product also obeys 𝑥 ⊗ 𝑦 = 𝑦 ⊗ 𝑥. We will discuss such a symmetric vector product in
Lecture 4.

After cornering these natural properties, let us analyze familiar notions of vector
products.

1. the dot product: 𝐻 × 𝐻 → F, where (𝑥, 𝑦) ↦→ ⟨𝑥, 𝑦⟩. The dot product obeys
properties 1. 2. and 3. but is not faithful: two non-zero orthogonal vectors have
a vanishing dot-product.

2. the Schur/Hadamard product: 𝐻 × 𝐻 → 𝐻, where (𝑥, 𝑦) ↦→ [𝑥𝑖𝑦𝑖]𝑑𝑖=1. This vector
product obeys properties 1. 2. and 3. but is not faithful. The Schur product of
two non-zero vectors with disjoint supports vanishes.

3. the Outer product: 𝐻 × 𝐻 → ℒ(𝐻), where (𝑥, 𝑦) ↦→ 𝑥𝑦𝑇 . This product fulfills
all the axioms from Definition 2.1. However, it is not obvious how to generalize
the outer product to more than two vectors.

2.2 Axiomatic approach to bipartite tensor products
Let “⊗” denote a product operation that obeys the first three properties of Definition 2.1.
For 𝑥, 𝑦 ∈ 𝐻, we define the elementary tensor product 𝑥 ⊗ 𝑦. For now, we regard this
as a formal product of 𝑥 and 𝑦. The tensor product space 𝐻⊗2 contains all formal2
linear combinations

𝑇 =
𝑟∑︁

𝑖=1
𝛼𝑖𝑥𝑖 ⊗ 𝑦𝑖 𝑟 ∈ N, 𝑥𝑖, 𝑦𝑖 ∈ 𝐻, 𝛼𝑖 ∈ F. (1)

We emphasize that these formal representations of 𝑇 are not unique: the zero property
implies that 𝑥⊗0 and 0⊗𝑦 both yield zero. Adding terms of this form in the summation
(1) thus does not change 𝑇 . Moreover, additivity and homogeneity ensure linearity:

(𝛼𝑥 + 𝛽𝑦) ⊗ 𝑧 =𝛼𝑥 ⊗ 𝑧 + 𝛽𝑦 ⊗ 𝑧,

𝑥 ⊗ (𝛼𝑦 + 𝛽𝑧) =𝛼𝑥 ⊗ 𝑦 + 𝛽𝑦 ⊗ 𝑧.

This in turn implies that vectors 𝑥𝑖, 𝑦𝑖 ∈ 𝐻 can be further decomposed into different
vectors (e.g. via a basis expansion) and inserting these decompositions into (1) seemingly
leads to a different 𝑇 ∈ 𝐻⊗2.

We define the set of tensor products as the space of all tensors 𝑇 modulo these
identity transformations:

2Formal means, that for now we treat these expressions as a collection of symbols, give them a name
and perform linear combinations.

3

Definition 2.3 (Tensor product space). Let 𝐻 be a finite dimensional vector space over F
and let 𝑥 ⊗ 𝑦 be a vector product that satisfies Definition 2.1. Then

𝐻⊗2 =
{︃

𝑟∑︁

𝑖=1
𝛼𝑖𝑥𝑖 ⊗ 𝑦𝑖 ∈ 𝐻⊗2 ∀𝑟 ∈ N, ∀𝛼𝑖 ∈ F, ∀𝑥𝑖, 𝑦𝑖 ∈ 𝐻

}︃
/identity.

We emphasize that the definitions and concepts presented in this sub-section naturally
generalize to products of more than two vectors.

3 Bipartite tensor product space 𝐻⊗2

3.1 Bipartite tensor products and bilinear forms
In this section, we define a natural notion of a tensor product. It obeys all axioms
from Definition 2.1 and is minimal in the sense that every true statement about tensor
products can be reduced to these defining properties. No additional structure is present.

Definition 3.1 (Bilinear forms). A bilinear form is a function of the form 𝐵 : 𝐻 × 𝐻 → F
with the following properties:

1. For any 𝑥 ∈ 𝐻, 𝐵(𝑥, ·) is a linear functional on 𝐻;
2. For any 𝑦 ∈ 𝐻, 𝐵(·, 𝑦) is a linear functional on 𝐻.

Let Bil(𝐻, 𝐻) denote the (linear) space of all bilinear forms.

A concrete model for bilinear forms can be obtained in the following way: Let
𝐴 = [𝑎𝑖,𝑗]𝑑𝑖,𝑗=1 ∈ F𝑑×𝑑 be a 𝑑 × 𝑑 matrix. Then, we can associate 𝐴 with the following
bilinear form:

𝐵𝐴(𝑥, 𝑦) =
𝑑∑︁

𝑖,𝑗=1
𝑥𝑖𝑎𝑖,𝑗𝑣𝑗 .

Note that this identification is bijective. Conversely, fix a bilinear form 𝐵(·, ·) and an
orthonormal basis {𝑒𝑖}𝑑

𝑖=1 of 𝐻. Then, linearity implies

𝐵(𝑥, 𝑦) = 𝐵

⎛
⎝

𝑑∑︁

𝑖=1
𝑥𝑖𝑒𝑖,

𝑑∑︁

𝑗=1
𝑦𝑗𝑒𝑗

⎞
⎠ =

𝑑∑︁

𝑖,𝑗=1
𝑥𝑖𝐵(𝑒𝑖, 𝑒𝑗)𝑦𝑗

for any 𝑥, 𝑦 ∈ 𝐻 with basis expansion 𝑥 = ∑︀𝑛
𝑖=1 𝑥𝑖𝑒𝑖, 𝑦 = ∑︀𝑛

𝑗=1 𝑦𝑗𝑒𝑗 . The 𝑑2 =
(dim(𝐻))2 numbers 𝐵(𝑒𝑖, 𝑒𝑗) are independent degrees of freedom. We can identify these
degrees of freedom with entries of a matrix 𝐴 = [𝑎𝑖,𝑗]𝑑𝑖,𝑗=1 that tabulates the action of
the bilinear form on different basis vectors: 𝑎𝑖,𝑗 = 𝐵(𝑒𝑖, 𝑒𝑗).

Definition 3.2 (Tensor product space). Let 𝐻 be a (finite dimensional) inner product space.
The tensor product space 𝐻⊗2 is the dual space of Bil(𝐻, 𝐻). In particular, we identify
elementary tensor products with the following functional:

𝑥 ⊗ 𝑦 : 𝐵 ↦→ 𝐵(𝑥, 𝑦) ∈ F.

4

Fact 3.3. This definition of a tensor product obeys all properties listed in Definition 2.1.
The fact that vector spaces and their duals are both linear and have equal dimension

allows us to infer the dimension of 𝐻⊗2 via the correspondence between bilinear forms
and matrices:

dim
(︁
𝐻⊗2

)︁
= dim(Bil(𝐻, 𝐻)*) = dim(Bil(𝐻, 𝐻)) = dim

(︁
Fdim(𝐻)×dim(𝐻)

)︁
= dim(𝐻)2.

Moreover, linear extension allows us to define an inner product on 𝐻 ⊗ 𝐻 that is
induced by the inner product ⟨·, ·⟩ on 𝐻. For elementary tensors 𝑥1 ⊗ 𝑦1 and 𝑥2 ⊗ 𝑦2,
we define

⟨𝑥1 ⊗ 𝑦1, 𝑥2 ⊗ 𝑦2⟩ = ⟨𝑥1, 𝑥2⟩⟨𝑦1, 𝑦2⟩ ∀𝑥1, 𝑥2 ∈ 𝐻, ∀𝑦1, 𝑦2 ∈ 𝐻. (2)

We extend this definition linearly to the space of all linear combinations of elementary
tensors (1), i.e. 𝐻⊗2.
Fact 3.4 (Dimension of tensor products). The tensor product space 𝐻⊗2 equipped with
induced the inner product (2) forms an inner product space of dimension dim(𝐻⊗2) =
dim(𝐻)2.
3.2 Concrete realization of 𝐻⊗2 as the space of all outer products
So far, we have presented a construction of 𝐻⊗2 as the dual space of bilinear forms
Bil(𝐻, 𝐻). This is rather abstract, but we can represent 𝐻⊗2 as an outer product space.
Set 𝑑 = dim(𝐻) and define the elementary tensors to be outer products of vectors:

𝑥 ⊗ 𝑦 := 𝑥𝑦𝑇 ∈ ℒ(𝐻) ≃ F𝑑×𝑑.

The linear hull of these outer products corresponds to F𝑑×𝑑, or equivalently, ℒ(𝐻).
Note that dim(ℒ(𝐻)) = 𝑑2, in accordance with Fact 3.4. On outer products 𝑥𝑦𝑇 , the
induced inner product (·, ·) is

(︁
𝑥1𝑦𝑇

1 , 𝑥2𝑦𝑇
2

)︁
:= ⟨𝑥1, 𝑥2⟩⟨𝑦1, 𝑦2⟩ = tr

(︁(︁
𝑥1𝑦𝑇

1
)︁*

𝑥2𝑦𝑇
2

)︁
,

where “tr” denotes the trace and 𝐴* is the adjoint of 𝐴 ∈ ℒ(𝐻). By linear extension,
this inner product becomes the Frobenius (or Hilbert-Schmidt) inner product (𝐴, 𝐵) =
tr(𝐴*𝐵) on ℒ(𝐻).

4 Operators on 𝐻⊗2

4.1 Definition and useful properties
For 𝐴, 𝐵 ∈ ℒ(𝐻), we define 𝐴 ⊗ 𝐵 ∈ ℒ(𝐻⊗2) via the following action on elementary
tensors:

(𝐴 ⊗ 𝐵)(𝑥 ⊗ 𝑦) = (𝐴𝑥) ⊗ (𝐵𝑦).
This action can be extended linearly to all elements of 𝐻⊗2. Linear extensions of the
form ∑︀𝑟

𝑖=1 𝛼𝑖𝐴𝑖 ⊗ 𝐵𝑖 form the full set of linear operators on 𝐻⊗2. The key property of
this construction is:

(𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷). (3)

This property has powerful consequences.

5

Fact 4.1.

1. Let I ∈ ℒ(𝐻) be the identity. Then, I ⊗ I is the identity in ℒ(𝐻⊗2).
2. Let 𝐴, 𝐵 ∈ ℒ(𝐻) be invertible. Then, (𝐴 ⊗ 𝐵)−1 =

(︀
𝐴−1)︀ ⊗ (︀

𝐵−1)︀
.

3. (𝐴 ⊗ 𝐵)−1 =
(︀
𝐴−1)︀ ⊗ (︀

𝐵−1)︀
if and only if 𝐴, 𝐵 ∈ ℒ(𝐻) are invertible,

4. Let 𝐴* denote the adjoint of 𝐴 ∈ ℒ(𝐻). Then, (𝐴 ⊗ 𝐵)* = (𝐴*) ⊗ (𝐵*).

All these properties readily follow from the definition and the composition rule (3).
For instance, the first claim is a consequence of

(I ⊗ I)(𝐴 ⊗ 𝐵) = (I𝐴) ⊗ (I𝐵) = 𝐴 ⊗ 𝐵 = (𝐴I) ⊗ (𝐵I) = (𝐴 ⊗ 𝐵)(I ⊗ I).

for all 𝐴, 𝐵 ∈ ℒ(𝐻). These facts together with the composition rule (3) imply the
following persistence property.

Fact 4.2 (Persistence). Fix 𝐴, 𝐵 ∈ ℒ(𝐻).

1. If 𝐴 and 𝐵 are positive semidefinite, then so is 𝐴 ⊗ 𝐵.
2. If 𝐴 and 𝐵 are self-adjoint, then so is 𝐴 ⊗ 𝐵.
3. If 𝐴 and 𝐵 are normal, then so is 𝐴 ⊗ 𝐵.
4. If 𝐴 and 𝐵 are unitary, then so is 𝐴 ⊗ 𝐵.

Remark 4.3. Converse persistence relations are usually false. The concept of quantum
entanglement is closely related to a converse relation of property 1. failing to hold. We
refer to Lecture 3 for details.

The Kronecker product is a concrete model for tensor products of operators.
4.2 Spectral Theory
To ease notational burden, we will restrict attention to tensor product operators of the
form 𝐴 ⊗ 𝐴. A generalization to asymmetric tensor products 𝐴 ⊗ 𝐵 is straightforward.
4.2.1 Spectral resolutions

Recall that an operator 𝐴 ∈ ℒ(𝐻) is normal if 𝐴*𝐴 = 𝐴𝐴* = I. The spectral theorem
implies that every normal matrix has a spectral resolution:

𝐴 =
∑︁

𝑖

𝜆𝑖𝑃𝑖. (4)

Here, 𝜆𝑖 are (potentially complex-valued) eigenvalues and the 𝑃𝑖’s are (mutually)
orthogonal projectors that form a particular resolution of the identity: ∑︀

𝑖 𝑃𝑖 = I and
𝑃𝑖𝑃𝑗 = 𝛿𝑖,𝑗𝑃𝑖.

Fact 4.4 (Spectral resolutions of tensor product operators). Let 𝐴 ∈ ℒ(𝐻) be a normal
matrix with spectral resolution (4). Then,

𝐴 ⊗ 𝐴 =
∑︁

𝑖,𝑗

𝜆𝑖𝜆𝑗𝑃𝑖 ⊗ 𝑃𝑗

is a spectral resolution of the tensor product.

6

4.2.2 Singular value decompositions of tensor product operators

Fact 4.5 (Singular value decompostions of tensor product operators). Let 𝐴 = 𝑈Σ𝑉 *

be a SVD of 𝐴 ∈ ℒ(𝐻). Then,

𝐴 ⊗ 𝐴 = (𝑈 ⊗ 𝑈)(Σ ⊗ Σ)(𝑉 ⊗ 𝑉)*

is a SVD of 𝐴 ⊗ 𝐴. In particular, the singular values are 𝜎𝑖𝜎𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑑.

4.2.3 Eigenvalue decompositions of tensor product operators

Recall that every operator admits a Schur decomposition

𝐴 = 𝑄𝑇 𝑄*.

Here, 𝑄 is unitary, and 𝑇 is upper triangular. The diagonal of 𝑇 contains all eigenvalues
of 𝐴. Persistence implies that these properties readily extend to tensor products (𝑇 ⊗ 𝑇
is again upper-triangular with respect to the designated basis used).

Fact 4.6 (Eigenvalues of tensor product operators). Suppose that 𝐴 ∈ ℒ(𝐻) has eigen-
values 𝜆1, . . . , 𝜆𝑑 ∈ C. Then, 𝐴 ⊗ 𝐴 has eigenvalues 𝜆𝑖𝜆𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑑.

5 Multi-partite tensor product spaces 𝐻⊗𝑘

5.1 Axiomatic approach to tensor spaces of order 𝑘 ≥ 3
Formally, we introduce elementary 𝑘-fold tensor

𝑥1 ⊗ · · · ⊗ 𝑥𝑘, 𝑥1, . . . , 𝑥𝑘 ∈ 𝐻

and define the space of all 𝑘-fold tensors by linear extension:

𝐻⊗𝑘 =
{︃

𝑟∑︁

𝑖=1
𝛼𝑖𝑥𝑖1 ⊗ · · · ⊗ 𝑥𝑖𝑘

: 𝑟 ∈ N, 𝛼𝑖 ∈ F, 𝑥𝑖𝑗 ∈ 𝐻

}︃
/identity

Note that this product formalism obeys all desirable axioms for vector multiplication.
In particular, the role of zero and faithfulness hold: 𝑥1 ⊗ · · · ⊗ 𝑥𝑘 = 0 if and only if
𝑥𝑖 = 0 for at least one coordinate 1 ≤ 𝑖 ≤ 𝑘.
5.2 Multi-partite tensor product spaces and multi-linear forms

More concretely, 𝐻⊗𝑘 can be identified with the dual space of the space of all multi-linear
forms.

Definition 5.1 (Multi-linear forms). A multi-linear form (of order 𝑘) is a function

𝑀 : 𝐻×𝑘 = 𝐻 × · · · 𝐻⏟ ⏞
𝑘 times

→ F

that is linear in each argument. More precisely:

1. For any 𝑥2, . . . , 𝑥𝑘 ∈ 𝐻, 𝑀(·, 𝑥2, . . . , 𝑥𝑘) is a linear functional on 𝐻;

7

...

k. For any 𝑥1, . . . , 𝑥𝑘−1 ∈ 𝐻, 𝑀(𝑥1, . . . , 𝑥𝑘−1, ·) is a linear functional on 𝐻.

Let Multi
(︁
𝐻×𝑘

)︁
denote the (linear) space of all multi-linear forms.

In complete analogy to the bipartite case, we can identify 𝐻⊗𝑘 with the dual space
of all multi-linear forms (of order 𝑘).

Definition 5.2 (Tensor product space). Let 𝐻 be a (finite dimensional) inner product space.
The tensor product space 𝐻⊗𝑘 is the dual space of Multi

(︁
𝐻×𝑘

)︁
. In particular, we

identify elementary tensors with the following functional:

𝑥1 ⊗ · · · ⊗ 𝑥𝑘 : 𝑀 ↦→ 𝑀(𝑥1, . . . , 𝑥𝑘) ∈ F.

The inner product ⟨·, ·⟩ on 𝐻 induces an inner product on 𝐻⊗𝑘. Define

⟨𝑥1 ⊗ · · · ⊗ 𝑥𝑘, 𝑦1 ⊗ · · · ⊗ 𝑦𝑘⟩ =
𝑘∏︁

𝑗=1
⟨𝑥𝑗 , 𝑦𝑗⟩ (5)

and extend this definition linearly.

Fact 5.3. Let 𝑒1, . . . , 𝑒𝑑 be an orthonormal basis of 𝐻 (with respect to ⟨·, ·⟩). Then,

{𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑑
: 1 ≤ 𝑖1, . . . , 𝑖𝑑 ≤ 𝑑}

is an orthonormal basis of 𝐻⊗𝑘 (with respect to the extended inner product (5)).

Corollary 5.4. Set 𝑑 = dim(𝐻). Then, dim
(︁
𝐻⊗𝑘

)︁
= 𝑑𝑘.

The dimension of tensor product spaces grows exponentially with the order. This is
a veritable curse of dimensionality.

6 Operators on 𝐻⊗𝑘

For 𝐴1, . . . , 𝐴𝑘 ∈ ℒ(𝐻) we define tensor product operators 𝐴1 ⊗ · · · ⊗ 𝐴𝑘 ∈ ℒ
(︁
𝐻⊗𝑘

)︁

via their action on elementary tensors

(𝐴1 ⊗ · · · ⊗ 𝐴𝑘)(𝑥1 ⊗ · · · ⊗ 𝑥𝑘) = (𝐴𝑥1) ⊗ · · · ⊗ (𝐴𝑥𝑘)

and extend this definition by linearity. The results form Section 4 generalize natu-
rally to this 𝑘-fold setting. This, in particular, includes the composition rule. For
𝐴1, . . . , 𝐴𝑘, 𝐵1, . . . , 𝐵𝑘 ∈ ℒ(𝐻),

(𝐴1 ⊗ · · · ⊗ 𝐴𝑘)(𝐵1 ⊗ · · · ⊗ 𝐵𝑘) = (𝐴1𝐵1) ⊗ · · · ⊗ (𝐴𝑘𝐵𝑘).

This composition rule implies persistence. For instance, let I ∈ ℒ(𝐻) be the identity.
Then, I ⊗ · · · ⊗ I is the identity on ℒ(𝐻⊗𝑘).

8

Fact 6.1 (Persistence). Fix 𝐴1, . . . , 𝐴𝑘 ∈ ℒ(𝐻).

1. If 𝐴1, . . . , 𝐴𝑘 are positive semidefinite, then so is 𝐴1 ⊗ · · · ⊗ 𝐴𝑘.
2. If 𝐴1, . . . , 𝐴𝑘 are self-adjoint, then so is 𝐴1 ⊗ · · · ⊗ 𝐴𝑘.
3. If 𝐴1, . . . , 𝐴𝑘 are normal, then so is 𝐴1 ⊗ · · · ⊗ 𝐴𝑘.
4. If 𝐴1, . . . , 𝐴𝑘 are unitary, then so is 𝐴1 ⊗ · · · ⊗ 𝐴𝑘.

The insights about spectral resolutions and decompositions also generalize in a
straightforward way.

Fact 6.2. Fix 𝐴 ∈ ℒ(𝐻) and write 𝐴⊗𝑘 = 𝐴 ⊗ · · · ⊗ 𝐴.

1. Suppose that 𝐴 is normal with spectral resolution 𝐴 = ∑︀
𝑖 𝜆𝑖𝑃𝑖. Then,

𝐴⊗𝑘 =
∑︁

𝑖1,...,𝑖𝑘

𝜆𝑖1 · · · 𝜆𝑖𝑘
𝑃𝑖1 ⊗ · · · ⊗ 𝑃𝑖𝑘

is again a spectral resolution.
2. Let 𝐴 = 𝑈Σ𝑉 * be a singular value decomposition with singular values 𝜎1, . . . 𝜎𝑑.

Then, (𝑈 ⊗ · · · ⊗ 𝑈)(Σ ⊗ · · · ⊗ Σ)(𝑉 ⊗ · · · ⊗ 𝑉)* is a singular value decomposi-
tion of 𝐴⊗𝑘. In particular, the singular values are 𝜎𝑖1 · · · 𝜎𝑖𝑘

for 1 ≤ 𝑖1, . . . , 𝑖𝑘 ≤ 𝑑.
3. Suppose that 𝐴 has eigenvalues 𝜆1, . . . , 𝜆𝑑 ∈ C. Then, the eigenvalues of 𝐴⊗𝑘 are

𝜆𝑖1 · · · 𝜆𝑖𝑘
for 1 ≤ 𝑖1, . . . , 𝑖𝑘 ≤ 𝑑.

Lecture 03: Wiring calculus and entanglement
Scribe: Erika Ye

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
April 8, 2019

1 Agenda
1. Wiring calculus
2. Joint classical probability distributions
3. Joint quantum distributions
4. Entanglement and the Positive-Partial-Transpose (PPT) test

2 Wiring Calculus
Wiring calculus is a graphical formalism that is designed to deal with index contractions
among tensors. It has been used in various fields, such as physics (Feynman and
Penrose), representation theory (Cvitanovic), knot theory (Bar-Natan and Kontsevich),
quantum groups (Reshetikhin), and category theory (Deligne and Vogel). More recently,
it has become popular in the field of tensor networks. (We refer to the excellent lecture
notes by Bridgeman and Chubb for further information and reading.) Here, we will
focus on wiring calculus developed for tensor representation and manipulation.
2.1 Wiring diagrams for vectors and adjoints
Let 𝐻 be a 𝑑-dimensional vector space with designated inner product ⟨·, ·⟩. Let 𝑒1, . . . , 𝑒𝑑

denote a designated orthonormal basis of 𝐻. The basic building blocks of wiring calculus
are boxes for standard basis vectors and their (basis-dependent) transposes:

𝑒𝑖 = 𝑒𝑖 and 𝑒𝑇
𝑖 = 𝑒𝑖 for 1 ≤ 𝑖 ≤ 𝑑.

We extend both definitions in a linear and anti-linear fashion to all of 𝐻:

𝑥 =
𝑑∑︁

𝑖=1
𝑥𝑖

(︃
𝑒𝑖

)︃
and 𝑥 =

𝑑∑︁

𝑖=1
�̄�𝑖

(︃
𝑒𝑖

)︃
(1)

This convention is crucial. Boxes with an emanating line towards the left are standard
vectors, while boxes with an emanating line towards the right are adjoint vectors. This
convention is designed to appropriately capture contractions, like the inner product:

⟨𝑥, 𝑦⟩ =
𝑑∑︁

𝑖,𝑗=1
�̄�𝑖𝑦𝑗⟨𝑒𝑖, 𝑒𝑗⟩ =

𝑑∑︁

𝑖=1

𝑑∑︁

𝑗=1
�̄�𝑖𝑦𝑗 𝑒𝑖 𝑒𝑗 = 𝑥 𝑦 (2)

Transposition corresponds to bending an emanating line into the opposite direction. For
standard basis vectors, we define

𝑒𝑖 =
(︃

𝑒𝑖

)︃𝑇

= 𝑒𝑖 and 𝑒𝑖 =
(︃

𝑒𝑖

)︃𝑇

= 𝑒𝑖 .

2

and extend this action linearly to 𝐻:

𝑥 =
𝑑∑︁

𝑖=1
𝑥𝑖

⎛
⎜⎜⎝ 𝑒𝑖

⎞
⎟⎟⎠ =

𝑑∑︁

𝑖=1
𝑥𝑖

(︃
𝑒𝑖

)︃
=

𝑑∑︁

𝑖=1
𝑥𝑖

(︃
𝑒𝑖

)︃
= �̄�

Similarly:
𝑥 = �̄� .

It is easy to see that doing the transpose twice returns the original vector.

Remark 2.1. Transposition is basis-dependent and turns column vectors (boxes with
lines emanating to the left) into row vectors (boxes with lines emanating to the left).
Importantly, it does not conjugate the vector entries.

The motivation behind this graphical formalism is as follows: Vectors can be thought
of as 1-dimensional arrays 𝑥 = [𝑥𝑖]𝑑𝑖=1. They correspond to 𝑑 numbers labeled by an
index 1 ≤ 𝑖 ≤ 𝑑. The outgoing lines in Equation (1) represent a free index. The direction
of the line tells us whether we should think of the array as a column, or row-vector. The
inner product (2) is an index contraction. It perfectly aligns the indices associated with
a row-vector and a column vector: ⟨𝑥, 𝑦⟩ = ∑︀𝑑

𝑖=1 �̄�𝑖𝑦𝑖. A closed line represents such a
contraction pictorially. This graphically mimics the Einstein summation convention:
⟨𝑥, 𝑦⟩ = �̄�𝑖𝑦

𝑖, where the location of the index tells us whether the object is a contra- or
co-variant vector and it is implicitly assumed that one sums over indices that appear
twice.
2.2 Wiring diagrams for operators
The wiring diagram formalism readily and consistently extends to operators (matrices).
An operator 𝐴 ∈ ℒ(𝐻) “eats” a vector 𝑥 and spits out another vector in 𝐻. In wiring
calculus, we write

𝐴𝑦 = 𝐴 𝑥 and 𝐴𝑦 = 𝐴*𝑥 ,

where 𝐴* ∈ ℒ(𝐻) is the adjoint of 𝐴. Operators are represented by boxes with two
emanating indices. This is consistent with the array interpretation. Operators may be
characterized by matrices 𝐴 = [𝑎𝑖𝑗]𝑑𝑖,𝑗=1 which are 2-dimensional arrays. The two indices
correspond to two lines that emanate in different directions. Matrix multiplication
combines two operators and returns a third one: 𝐴𝐵 ∈ ℒ(𝐻):

𝐴 𝐵 = 𝐴 𝐵

A particularly important operator/matrix is the identity 𝐼 ∈ ℒ(𝐻). It is characterized
by the unique property of “doing nothing”: I𝑥 = 𝑥 for all 𝑥 ∈ 𝐻. We pictorially
underline this by writing

I =

3

There is an alternative explanation for this notation. We can expand I = ∑︀𝑑
𝑖=1 𝑒𝑖𝑒

𝑇
𝑖 .

This action perfectly aligns both emanating indices. This resembles the contraction
that features in the inner product (2).

The trace is the natural index contraction for matrices. It perfectly aligns left- and
right-indices: tr(𝐴) = ∑︀𝑑

𝑖=1 𝐴𝑖𝑖:

tr(𝐴) = 𝐴 = 𝐴 .

Finally, the (basis dependent) transpose operation swaps the indices associated with a
matrix:

[︁
𝐴𝑇

]︁
𝑖𝑗

= 𝐴𝑗𝑖. Pictorially:

𝐴𝑇 = 𝐴

and it is easy to verify that transposing twice returns the original operator diagram.
2.2.1 Graphical proofs for important results in linear algebra

1. Inner products are basis independent: Fix a unitary matrix 𝑈 ∈ 𝐻 (basis change).
Then, for any 𝑥, 𝑦 ∈ 𝐻

⟨𝑈𝑥, 𝑈𝑦⟩ = 𝑈𝑥 𝑈𝑦 = 𝑥 𝑈* 𝑈 𝑦 = 𝑥 I 𝑦 = 𝑥 𝑦 = ⟨𝑥, 𝑦⟩

2. The trace is cyclic:

𝐴 𝐵 =
𝐴𝑇

𝐵 = 𝐵 𝐴

3. Outer products are matrices:

𝑥 𝑦 = 𝑥𝑦*

In particular,

tr
(︁
𝐴𝑥𝑦𝑇

)︁
= 𝐴 𝑥 𝑦 = 𝑦 𝐴 𝑥

2.3 Wiring diagrams for tensors
The wiring formalism readily extends to tensor products. Note that so far, all index lines
have been arranged horizontally. Wiring diagrams for operations in 𝐻 may be thought

4

of as wires that connect operations in a serial fashion. Tensor product operations are
arranged in a parallel fashion instead:

𝑥 ⊗ 𝑦 =
𝑥

𝑦
and (𝑥 ⊗ 𝑦)* =

𝑥

𝑦

This definition extends linearly to general tensors on 𝐻⊗2:

𝑡 =
∑︁

𝑖

𝑎𝑖𝑥𝑖 ⊗ 𝑦𝑖 = 𝑡 and 𝑡* =
∑︁

𝑖

𝑎𝑖𝑥
*
𝑖 ⊗ 𝑦*

𝑖 = 𝑡

The parallel alignment of tensor products ensures that extended scalar product factorizes
appropriately for elementary tensors:

⟨𝑥1 ⊗ 𝑦1, 𝑥2 ⊗ 𝑦2⟩ =
𝑥1

𝑦1

𝑥2

𝑦2

This concept extends linearly to more general tensors. Fix 𝑡1 = ∑︀𝑟1
𝑖=1 𝛼𝑖𝑤𝑖 ⊗ 𝑥𝑖 and

𝑡2 = ∑︀𝑟2
𝑗=1 𝛽𝑗𝑦𝑗 ⊗ 𝑧𝑗 . Then,

⟨𝑡1, 𝑡2⟩ = 𝑡1 𝑡2 =
𝑟1∑︁

𝑖=1

𝑟2∑︁

𝑗=1
�̄�𝑖𝛽𝑗

𝑤𝑖

𝑥𝑖

𝑦𝑗

𝑧𝑗

=
𝑟1∑︁

𝑖=1

𝑟2∑︁

𝑗=1
�̄�𝑖𝛽𝑗⟨𝑤𝑖, 𝑦𝑗⟩⟨𝑥𝑖, 𝑧𝑗⟩.

The action of elementary tensor product operators 𝐴 ⊗ 𝐵 also factorizes appropriately:

(𝐴 ⊗ 𝐵)(𝑥 ⊗ 𝑦) = 𝐴

𝐵

𝑥

𝑦
= 𝐴𝑥

𝐵𝑦
.

Similar to general tensor products of vectors, we denote general tensor product operators
by big boxes with (in total) 4 index lines:

𝑇 =
𝑟∑︁

𝑖=1
𝛼𝑖

𝐴𝑖

𝐵𝑖

The trace on ℒ(𝐻 ⊗ 𝐻) again corresponds to a full index contraction. It aligns in- and
out-going indices on both spaces and sums over both. In wiring notation:

tr(𝑇) = 𝑇 .

5

For ℒ(𝐻), the trace is the only index contraction. For ℒ(𝐻 ⊗ 𝐻) partial contractions
are also possible (align only one pair of indices). The two options correspond to partial
traces over the first and second tensor factor, respectively:

tr1(𝑇) = 𝑇 and tr2(𝑇) = 𝑇 .

More formally, these partial contractions are defined for elementary tensor product
operators 𝐴 ⊗ 𝐵 and linearly extended to all of ℒ(𝐻 ⊗ 𝐻):

tr1(𝐴 ⊗ 𝐵) = 𝐴

𝐵

= tr(𝐴)𝐵 ∈ ℒ(𝐻),

tr2(𝐴 ⊗ 𝐵) = 𝐴

𝐵

= tr(𝐵)𝐴 ∈ ℒ(𝐻).

Similarly, we define the partial transposes on elementary tensor products

PT1(𝐴 ⊗ 𝐵) = 𝐴𝑇 ⊗ 𝐵 and PT2(𝐴 ⊗ 𝐵) = 𝐴 ⊗ 𝐵𝑇

and extend them linearly to ℒ(𝐻⊗2). In contrast to the previous definitions, these
operations are basis dependent. The wiring formula for ordinary transposes readily
generalizes to partial transposition:

𝑇 and 𝑇 . (3)

Finally, we introduce a useful correspondence between ℒ(𝐻) and 𝐻⊗2. Note that both
spaces are linear and have the same dimension. Vectorization is a bijective map from
ℒ(𝐻) to 𝐻⊗2 that makes this correspondence precise. For 1 ≤ 𝑖, 𝑗 ≤ 𝑑 define

vec
(︁
𝑒𝑖𝑒

𝑇
𝑗

)︁
= 𝑒𝑖 ⊗ 𝑒𝑗 ∈ 𝐻⊗2.

The operators 𝐸𝑖𝑗 = 𝑒𝑖𝑒
𝑇
𝑗 form a basis of ℒ(𝐻) and allow for generalizing this definition

linearly to all ℒ. In wiring notation,

vec(𝐴) = 𝐴 and vec(𝐴)* = 𝐴*

6

This correspondence is basis dependent, but does preserve the natural inner products
associated with both spaces:

⟨vec(𝐴), vec(𝐵)⟩ =

ve
c(

𝐴
) vec(𝐵

)

= 𝐴* 𝐵 = tr(𝐴*𝐵) = (𝐴, 𝐵).

This isometry connects the (extended) Euclidean inner product on 𝐻⊗2 with the
Frobenius inner product on ℒ(𝐻).
Remark 2.2. In Lecture 2, we discussed a concrete realization of 𝐻⊗2 as the linear hull
of all outer products ℒ(𝐻). This realization is equivalent to inverting the vectorization
map.

3 Joint Probability Distributions
Recall that a classical (discrete) probability space is fully characterized by a probability
vector

𝑝 ∈ Δ𝑑−1 =
{︁

𝑥 ∈ R𝑑 : 𝑥 ≥ 0, ⟨1, 𝑥⟩ = 1
}︁

= conv{𝑒1, . . . , 𝑒𝑑} ⊂ R𝑑.

Measurements correspond to resolutions of the identity (vector) {ℎ𝑎 : 𝑎 ∈ 𝐴} ⊂ R𝑑:
ℎ𝑎 ≥ 0 for each 𝑎 ∈ 𝐴 and ∑︀𝑎∈𝐴 ℎ𝑎 = 1. The probability rule is given by the standard
inner product on R𝑑:

Pr[𝑎|𝑝] = ⟨ℎ𝑎, 𝑝⟩ for all 𝑎 ∈ 𝐴.

This formalism fully describes a single 𝑑-variate random variable. A natural extension
is to consider joint random variables. Here we restrict ourselves to joint distributions
on a pair of 𝑑-variate random variables. Extensions to different dimensions and more
distributions are straightforward.
3.1 Independent distributions

Let Δ𝑑−1 be the standard probability simplex in R𝑑. Define

Δ𝑑−1⊗̂Δ𝑑−1 = {𝑝 ⊗ 𝑞 : 𝑝, 𝑞 ∈ Δ𝑑−1} ⊂ R𝑑 ⊗ R𝑑. (4)

The notation ⊗̂ underlines that this is not the usual tensor product. We do not allow
for convex (or linear) mixtures, only elementary tensor products feature. This in
turn implies that Δ𝑑−1⊗̂Δ𝑑−1 is not a convex set. The fact that a joint probability
distribution corresponds to an elementary tensor product has important consequences.
The probability rule associated with such joint distributions factorizes. More precisely,
let {ℎ𝑎 : 𝑎 ∈ 𝐴}, {ℎ𝑏 : 𝑏 ∈ 𝐴} ⊂ R𝑑 be two measurements that address the first and
second random variables respectively. Then, the combined measurement on both random
variables becomes

{ℎ𝑎 ⊗ ℎ𝑏 : 𝑎 ∈ 𝐴, 𝐵 ∈ 𝐵} ⊂ R𝑑⊗̂R𝑑

and the (extended) probability rule factorizes:

Pr[𝑎, 𝑏|𝑝 ⊗ 𝑞] = ⟨ℎ𝑎 ⊗ ℎ𝑏, 𝑝 ⊗ 𝑞⟩ = ⟨ℎ𝑎, 𝑝⟩⟨ℎ𝑏, 𝑞⟩ = Pr[𝑎|𝑝]Pr[𝑏|𝑞].

This is the defining property of two independent random variables.

7

Fact 3.1. The set of joint independent probability distributions corresponds to Δ𝑑−1 ⊗
Δ𝑑−1 = {𝑝 ⊗ 𝑞 : 𝑝, 𝑞 ∈ Δ𝑑−1}.

Example 3.2 (two fair coins). The probability vector associated with a fair coin toss is
𝑝 = 2−11 ∈ R2. The joint probability distribution of two independent coin tosses
becomes (︂1

21
)︂

⊗
(︂1

21
)︂

≃ 1
41 ∈ R4.

Example 3.3 (Two deterministic distributions). Let 𝑒1, . . . , 𝑒𝑑 denote the standard basis of
R𝑑. Then, each distribution of the form 𝑝 = 𝑒𝑖 is deterministic. A joint distribution of
deterministic probability vectors is independent:

𝑝joint = 𝑒𝑖 ⊗ 𝑒𝑗 ∈ Δ𝑑−1⊗̂Δ𝑑−1.

4 Correlated random variables
Independent joint probability distributions are not everything. Correlated distributions
are also possible. Note that every joint probability distribution 𝑝joint ∈ R𝑑 ⊗ R𝑑 is
necessarily entry-wise positive and normalized. Therefore, it must be contained in the
extended probability simplex:

Δ𝑑2−1 =
{︁

𝑡 ∈ R𝑑 ⊗ R𝑑 : 𝑡 ≥ 0, ⟨1 ⊗ 1, 𝑡⟩ = 1
}︁

. (5)

Importantly, Δ𝑑−1⊗̂Δ𝑑−1 ⊂ Δ𝑑2−1 and this inclusion is strict.

Example 4.1. Consider a joint distribution of the form

𝑝joint = 1
2(𝑒1 ⊗ 𝑒2 + 𝑒2 ⊗ 𝑒1) ∈ Δ𝑑2−1.

It is easy to check that 𝑝joint /∈ Δ𝑑−1 ⊗ Δ𝑑−1.

Definition 4.2. We call a joint probability distribution 𝑝joint ∈ R𝑑 ⊗ R𝑑 correlated if it is
not independent, i.e. 𝑝joint /∈ Δ𝑑−1⊗̂Δ𝑑−1.

The following simple argument provides a geometric connection between independent
random variables and every possible joint probability distribution.

Proposition 4.3. The two sets (4) and (5) have the following relation: conv
{︀
Δ𝑑−1⊗̂Δ𝑑−1

}︀
=

Δ𝑑2−1.

Proof. Persistence ensures 𝑝 ⊗ 𝑞 ≥ 0 and ⟨1 ⊗ 1, 𝑝, 𝑞⟩ = ⟨1, 𝑝⟩⟨1, 𝑞⟩ = 1 for any
𝑝, 𝑞 ∈ Δ𝑑−1. This readily implies Δ𝑑−1⊗̂Δ𝑑−1 ⊆ Δ𝑑2−1. Conversely, recall that Δ𝑑−1
is the convex hull of its extreme points: Δ𝑑−1 = conv{𝑒1, . . . , 𝑒𝑑}. Tensor products of
such deterministic distributions are independent and we conclude

conv
{︀
Δ𝑑−1⊗̂Δ𝑑−1

}︀ ⊇ conv{𝑒𝑖 ⊗ 𝑒𝑗 : 1 ≤ 𝑖, 𝑗 ≤ 𝑑} = Δ𝑑2−1,

where the last equation follows from the fact that independent deterministic distributions
constitute all extreme points of the larger simplex.

8

Corollary 4.4 (Full characterization of joint probability distributions). Joint probability
distributions are either independent, or correlated (there is no joint option). Moreover,
every correlated distribution corresponds to a convex mixture of independent distributions:

Δ𝑑−1⊗̂Δ𝑑−1⏟ ⏞
independent

⊂ conv
{︀
Δ𝑑−1⊗̂Δ𝑑−1

}︀
⏟ ⏞

correlated

= Δ𝑑2−1⏟ ⏞
everything

.

5 Joint states of bipartite quantum systems
Recall that a single quantum mechanical system is described by a (probability) density
matrix:

𝜌 ∈
{︁

𝑋 ∈ H𝑑 : 𝑋 ⪰ 0, (𝐼, 𝑋) = tr(𝑋) = 1
}︁

= S
(︁
H𝑑
)︁
.

Next consider a joint quantum system that is comprised of two quantum mechanical
particles. The associated joint density matrix lives in the tensor product H𝑑 ⊗ H𝑑 ⊂
ℒ(C𝑑 ⊗ C𝑑). In full analogy to the analysis of classical probability distributions, we
introduce the following three sets:

(i) independent joint quantum states: S(H𝑑)⊗̂S(H𝑑) =
{︁

𝜌 ⊗ 𝜎 : 𝜌, 𝜎 ∈ 𝒮(H𝑑)
}︁

,

(ii) Separable joint quantum states: SEP
(︁
H𝑑 ⊗ H𝑑

)︁
:= conv

{︁
S(H𝑑)⊗̂S(H𝑑)

}︁
. This

set encompasses all quantum state that arise as convex mixtures of independent
joint quantum states.

(iii) all possible states: S
(︁
H𝑑 ⊗ H𝑑

)︁
=
{︁

𝑋 ∈ H𝑑 ⊗ H𝑑 : 𝑋 ⪰ 0, (I ⊗ I, 𝑋) = 1
}︁

.

These sets are related by the following inclusions:

S(H𝑑)⊗̂S(H𝑑)⏟ ⏞
independent

⊆ SEP
(︁
H𝑑 ⊗ H𝑑

)︁

⏟ ⏞
correlated

⊆ S(H𝑑 ⊗ H𝑑)⏟ ⏞
everything

. (6)

5.1 The Positive Partial Transpose Test

It should not come as a surprise that the first inclusion in Rel. (6) is strict. Correlated
joint quantum distributions do exist. A more interesting question is whether correlations
span the entire space of joint density matrices.

A seminal test designed by Horodecki3 and Peres (1996) addresses this question and
provides a necessary condition for joint quantum states to be separable.

Theorem 5.1 (The Positive-Partial-Transpose (PPT) test). Every separable joint quan-
tum state 𝜌joint ∈ SEP

(︁
H𝑑 ⊗ H𝑑

)︁
admits positive semidefinite partial transposes:

PT1(𝜌joint) ⪰ 0 and PT2(𝜌joint) ⪰ 0.

Here, PT1, PT2 : H𝑑 ⊗ H𝑑 → H𝑑 ⊗ H𝑑 denote the partial transposes (3).

9

Proof. First note that ordinary transposition does not affect positive semidefinitiness.
Suppose that 𝐴 ∈ H𝑑 is positive semidefinite and fix 𝑦 ∈ C𝑑. Then,

⟨𝑦, 𝐴𝑇 𝑦⟩ = 𝐴𝑇𝑦 𝑦 = 𝐴𝑦 𝑦 = 𝐴𝑇𝑦 𝑦 = ⟨𝑦, 𝐴𝑦⟩

which is always non-negative, because 𝐴 ⪰ 0. Next, choose 𝜌joint ∈ Sep
(︁
H𝑑 ⊗ H𝑑

)︁
and

decompose it as 𝜌joint = ∑︀𝑟
𝑖=1 𝜏𝑖𝜎

(1)
𝑖 ⊗ 𝜎

(2)
𝑖 . Linearity of the partial transpose then

implies

PPT1(𝜌joint) =
𝑟∑︁

𝑖=1
𝜏𝑖PPT1

(︁
𝜎

(1)
𝑖 ⊗ 𝜎

(2)
𝑖

)︁
=

𝑟∑︁

𝑖=1
𝜏
(︁
𝜎

(1)
𝑖

)︁𝑇
⊗ 𝜎

(2)
𝑖 .

This operator is necessarily positive semidefinite, because of persistence and the fact
that psd operators form a convex cone. An analogous argument can be made for the
partial transpose over the second tensor product factor.

5.2 Entanglement
One of the most interesting features of quantum distributions is the following discrepancy:
convex mixtures of independent quantum distributions do not reach all possible joint
quantum distributions. The second inclusion in Rel. (6) is strict!

Lemma 5.2. Set Ω = 𝑑−1vec(I)vec(I), where I ∈ H𝑑 denotes the identity. Then,
Ω ∈ 𝒮

(︁
H𝑑 ⊗ H𝑑

)︁
, but PPT1(Ω) is not positive semidefinite.

The following statement is an immediate consequence of the PPT-test (Theorem 5.1).

Corollary 5.3. Ω ∈ 𝒮(H𝑑 ⊗ H𝑑), but Ω /∈ Sep
(︁
H𝑑 ⊗ H𝑑

)︁
.

Proof of Lemma 5.2. Vectorization of the identity matrix assumes a particularly simple
form in wiring calculus:

vec(I) = I = and Ω = 1
𝑑

.

This allows us to compute the partial transpose pictorially:

PPT1(Ω) = 1
𝑑

PT1

(︃)︃
= = 1

𝑑
.

The operator on the right is called the flip operator : F ∈ ℒ(C𝑑 ⊗ C𝑑). It acts on
elementary tensors by permuting them: F𝑥 ⊗ 𝑦 = 𝑦 ⊗ 𝑥. It is easy to check that the
flip operator is self-adjoint and also obeys F2 = I ⊗ I. The spectrum of such operators
must be contained in {±1} and the only hermitian+unitary operator with positive

10

eigenvalues (𝜆 = 1 with 𝑑2-fold degeneracy) is the identity. Clearly, F is not the identity
and therefore it must have negative eigenvalues and cannot be positive semidefinite.
More concretely, note that

F(𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥) = −(𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥).

This observation identifies eigenvectors of F associated to eigenvalue 𝜆 = −1.

Definition 5.4 (Entanglement). A joint quantum state 𝜌joint ∈ S
(︁
H𝑑 ⊗ H𝑑

)︁
is called entan-

gled if it is not separable, i.e. 𝜌joint /∈ Sep
(︁
H𝑑 ⊗ H𝑑

)︁

The name entanglement dates back to Schrödinger who coined this term in a letter
to Einstein in 1935 (“Verschränkung” in German, translated to English by Schrödinger
himself).

Entangled states arise from correlations that do not have a classical counter-part.
This led physicists to use words like “mysterious” and “elusive” to describe entangle-
ment. Today, this strong form of correlation forms the basis of many “cool” quantum
technologies, like quantum teleportation (homework), super-dense coding, quantum key
distributions and quantum computing.

Lecture 04: Symmetric and antisymmetric tensors
Scribe: Erick Moen

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
April 10, 2019

1 Agenda
1. Flip operators
2. Symmetric and antisymmetric subspaces of 𝐻⊗𝑘

3. The determinant
4. The permanent

2 Symmetric and antisymmetric subspaces of 𝐻⊗𝑘

Let 𝐻 denote a 𝑑-dimensional inner product space with designated orthonormal basis
𝑒1, . . . , 𝑒𝑑. The flip operator 𝐹 : 𝐻⊗2 → 𝐻⊗2 permutes elementary tensor products:

𝐹 𝑥 ⊗ 𝑦 = 𝑦 ⊗ 𝑥 for all 𝑥, 𝑦 ∈ 𝐻⊗2.

This action can be extended linearly to all of 𝐻⊗2. In wiring calculus, the flip operator
assumes the following form:

𝐹 = .

It is easy to check that the flip operator is self-adjoint (𝐹 * = 𝐹 ∈ ℒ(𝐻⊗2)) and unitary:

𝐹 2 = 𝐹 𝐹 = = = I ⊗ I.

The trace of 𝐹 can also readily be computed using wiring calculus:

tr(𝐹) = 𝐹 = = = I = tr(I) = dim(𝐻) = 𝑑.

Define the following operators 𝑃 , 𝑄 ∈ ℒ(𝐻⊗2):

𝑃 = 1
2
(︁
I⊗2 + 𝐹

)︁
= 1

2

(︂
+

)︂
and 𝑄 = 1

2
(︁
I⊗2 − 𝐹

)︁
= 1

2

(︂
−

)︂

By construction, these operators are self-adjoint and have the following properties:

𝑃 2 = 𝑃 , 𝑄2 = 𝑄, and 𝑃 𝑄 = 0.

This implies that 𝑃 and 𝑄 are orthogonal projectors onto disjoint subspaces of 𝐻⊗2.

2

Definition 2.1 (Symmetric and antisymmetric subspaces of 𝐻⊗2). The symmetric subspace of
𝐻⊗2 is the range of the orthogonal projector 𝑃∨2 = 1

2(I + 𝐹):
⋁︁

𝑘 = range(𝑃∨2) = span{𝑥 ⊗ 𝑦 + 𝑦 ⊗ 𝑥 : 𝑥, 𝑦 ∈ 𝐻}.

The antisymmetric subspace of 𝐻⊗2 is the range of the orthogonal projector 𝑃∧2 =
1
2(I − 𝐹): ⋀︁

𝑘 = range(𝑃∧2) = span{𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥 : 𝑥, 𝑦 ∈ 𝐻}.

This notation is appropriate. The symmetric subspace contains all tensor products
that are symmetric under permutation of tensor factors. In contrast, the antisymmetric
subspace contains all tensor products that change sign upon permutations. This
decomposition of 𝐻⊗2 into symmetric and antisymmetric elements is complete.
Proposition 2.2. Suppose that 𝐻 has dimension 𝑑. Then,

𝐻⊗2 =
⋁︁2⨁︁⋀︁2 and dim

(︁⋁︁2
)︁

=
(︃

𝑑 + 1
2

)︃
, dim

(︁⋀︁2
)︁

=
(︃

𝑑

2

)︃
.

Proof. Use tr(I ⊗ I) = tr(I)2 = 𝑑2 and tr(𝐹) = 𝑑 to evaluate the dimensions of these
subspaces:

dim
(︁⋁︁2

)︁
=tr(𝑃∨2) = 1

2(tr(I ⊗ I) + tr(𝐹)) = 1
2(𝑑2 + 𝑑) =

(︃
𝑑 + 1

2

)︃
,

dim
(︁⋀︁2

)︁
=tr(𝑃∧2) = 1

2(tr(I ⊗ I) − tr(𝐹)) = 1
2(𝑑2 − 𝑑) =

(︃
𝑑

2

)︃
.

Next, 𝑃∨2𝑃∧2 = 0 which ensures that both subspaces are mutually orthogonal. Finally,
add the dimensions to check that the direct sum of both subspaces cover all of 𝐻⊗2:

dim
(︁⋁︁2

)︁
+ dim

(︁⋀︁2
)︁

=
(︃

𝑑 + 1
2

)︃
+
(︃

𝑑

2

)︃
= 𝑑2 = dim

(︁
𝐻⊗2

)︁
.

We conclude this section with a highly instructive example.
Example 2.3. Fix any operator 𝐴 ∈ ℒ(𝐻). Then,

tr(𝑃∧2𝐴) = 𝑃∧2
𝐴

𝐴

= 1
2

⎛
⎜⎜⎜⎝

𝐴

𝐴

− 𝐴

𝐴

⎞
⎟⎟⎟⎠ = 1

2
(︁
tr(𝐴)2 − tr

(︁
𝐴2
)︁)︁

.

Next, fix 𝑑 = 2 and set 𝐴 = [𝑎𝑖𝑗]2𝑖,𝑗=1. Then,

tr(𝑃∧2𝐴) = 1
2
(︁
tr(𝐴)2 + tr

(︁
𝐴2
)︁)︁

𝑎11𝑎22 − 𝑎12𝑎21 = det(𝐴).

This is not a coincidence, as we shall see later. For 𝑑 = 2, the antisymmetric subspace
has dimension

(︀2
2
)︀

= 1. Evaluating the action of 𝐴⊗2 on this one-dimensional subspace
produces a famous polynomial: the determinant.

3

3 Symmetric and antisymmetric subspaces of 𝐻⊗𝑘

Let us now generalize the constructions of symmetric and antisymmetric subspaces to
tensor spaces of order 𝑘 ≥ 3. Let 𝒮𝑘 denote the group of permutations of 𝑘 elements.
For 𝜋 ∈ 𝒮𝑘 define 𝑊𝜋 ∈ ℒ(𝐻⊗𝑘) via

𝑊𝜋𝑥1 ⊗ · · · ⊗ 𝑥𝑘 = 𝑥𝜋−1(1) ⊗ · · · ⊗ 𝑥𝜋−1(𝑘) for 𝑥1, . . . , 𝑥𝑘 ∈ 𝐻

and extend this definition linearly. It is easy to check that these operators are unitary
and respect the group structure of 𝒮𝑘: 𝑊𝜋𝑊𝜏 = 𝑊𝜋∘𝜏 . Hence, they form a unitary
representation of the symmetric group 𝒮𝑘 on 𝐻⊗𝑘.

Example 3.1 (𝑘 = 2). For 𝑘 = 2, there are only two permutations: the identity and
transposition (“flip”). In wiring notation:

{𝑊𝜋 : 𝜋 ∈ 𝒮2} =
{︂

,

}︂
⊂ ℒ

(︁
𝐻⊗2

)︁

Example 3.2 (𝑘 = 3). For 𝑘 = 3, there are 3! = 6 permutation operators:
⎧
⎪⎨
⎪⎩

, , , , ,

⎫
⎪⎬
⎪⎭

⊂ ℒ
(︁
𝐻⊗3

)︁

Let sign(𝜋) ∈ {±1} be the signature of a permutation 𝜋 ∈ 𝒮𝑘. Define

𝑃∨𝑘 = 1
𝑘!
∑︁

𝜋∈𝒮𝑘

𝑊𝜋 and 𝑃∧𝑘 = 1
𝑘!
∑︁

𝜋∈𝒮𝑘

sign(𝜋)𝑊𝜋. (1)

These are the correct definitions for projectors onto symmetric and antisymmetric
subspaces of 𝐻⊗𝑘. In order to demonstrate this, we need the following fact about
signatures.

Fact 3.3. The signature is multiplicative: sign(𝜋 ∘ 𝜏) = sign(𝜋)sign(𝜏) for all 𝜋, 𝜏 ∈ 𝒮𝑘

Proposition 3.4 (Symmetric and antisymmetric subspace of 𝐻⊗𝑘). The operators
𝑃∨𝑘 , 𝑃∧𝑘 ⊂ ℒ

(︁
𝐻⊗𝑘

)︁
defined in Equation (1) are orthogonal projectors onto mutu-

ally orthogonal subspaces
⋁︁

𝑘 = range(𝑃∨𝑘) and
⋀︁

𝑘 = range(𝑃∧𝑘).

Proof. First, note that 𝑊𝜋−1 = 𝑊 *
𝜋 for any 𝜋 ∈ 𝒮𝑘. Moreover, inversion doesn’t change

the signature. Therefore,

𝑃 *
∧𝑘 = 1

𝑘!
∑︁

𝜋∈𝒮𝑘

sign(𝜋)𝑊 *
𝜋 = 1

𝑘!
∑︁

𝜋∈𝒮𝑘

sign
(︁
𝜋−1

)︁
𝑊𝜋−1 = 1

𝑘!
∑︁

𝜋′∈𝒮𝑘

sign(𝜋′)𝑊𝜋′ = 𝑃∧𝑘 ,

4

because permutations form a group and it doesn’t matter if we sum over them or their
inverses. The operator 𝑃∧𝑘 is self-adjoint. Next, use multiplicativity of the sign to
conclude

𝑃 2
∧𝑘 = 1

(𝑘!)2
∑︁

𝜋,𝜏∈𝒮𝑘

sign(𝜋)sign(𝜏)𝑊𝜋𝑊𝜏 = 1
(𝑘!)2

∑︁

𝜋,𝜏∈𝒮𝑘

sign(𝜋 ∘ 𝜏)𝑊𝜋∘𝜏

= 1
𝑘!
∑︁

𝜋∈𝒮𝑘

sign(𝜋)𝑊𝜋.

Here, we have once more used the fact that 𝒮𝑘 is a group. Hence, 𝑃∧𝑘 is indeed an
orthogonal projector. A similar argument establishes that 𝑃∨𝑘 is also a projector.
Finally, note that

𝑃∧𝑘𝑃∨𝑘 = 1
(𝑘!)2

∑︁

𝜋,𝜏∈𝒮𝑘

sign(𝜋)𝑊𝜋𝑊𝜏 = 1
𝑘!
∑︁

𝜋∈𝒮𝑘

sign(𝜋)

⎛
⎝ 1

𝑘!
∑︁

𝜏∈𝒮𝑘

𝑊𝜋∘𝜏

⎞
⎠

=

⎛
⎝ 1

𝑘!
∑︁

𝜋∈𝒮𝑘

sign(𝜋)

⎞
⎠𝑃∨𝑘 = 0.

which establishes orthogonality. The final equation is due to the fact that the sign is
antisymmetric. Averaging over all possible signatures must yield zero.

Definition 3.4 naturally extends symmetry and antisymmetry to higher order tensor
spaces.

Lemma 3.5. Fix 𝑥1, . . . , 𝑥𝑘 ∈ 𝐻. Then,

𝑃∨𝑘𝑥2 ⊗ 𝑥1 ⊗ 𝑥3 ⊗ · · · ⊗ 𝑥𝑘 =𝑥1 ⊗ 𝑥2 ⊗ 𝑥3 ⊗ · · · ⊗ 𝑥𝑘,

𝑃∧𝑘𝑥2 ⊗ 𝑥1 ⊗ 𝑥3 ⊗ · · · ⊗ 𝑥𝑘 = − 𝑥1 ⊗ 𝑥2 ⊗ 𝑥3 ⊗ · · · ⊗ 𝑥𝑘,

and similarly for any other exchange (flip) of two factors. In particular,

𝑃∧𝑘𝑥 ⊗ 𝑥 ⊗ 𝑥3 ⊗ · · · ⊗ 𝑥𝑘 = 0 for any 𝑥 ∈ 𝐻.

Proof. Exchanging two factors corresponds to a certain transposition 𝜏 ∈ 𝒮𝑘: 𝑥1 ⊗ 𝑥1 ⊗
· · · ⊗ 𝑥𝑘 = 𝑊𝜏 𝑥1 ⊗ · · · ⊗ 𝑥𝑘. Transpositions have sign -1. The group structure of the
permutation group then implies

𝑃∧𝑘𝑊𝜏 = 1
𝑘!
∑︁

𝜋∈𝒮𝑘

sign(𝜋)(−sign(𝜏))𝑊𝜋𝑊𝜏 = − 1
𝑘!
∑︁

𝜋∈𝒮𝑘

sign(𝜋 ∘ 𝜏)𝑊𝜋∘𝜏 = −𝑃∧𝑘 .

This establishes antisymmetry among permutations. A similar, but simpler, argument
establishes symmetry for the projector onto the symmetric subspace: 𝑃∨𝑘𝑊𝜏 = 𝑃∨𝑘

for any transposition.
The final claim is enforced by contradicting requirements. By construction, 𝑥 ⊗ 𝑥 ⊗

𝑥3⊗· · ·⊗𝑥𝑘 is invariant under permuting the first two factors (symmetric). However, the
projection onto ⋀︀𝑘 must change sign when the first factors are permuted (antisymmetry).
The only tensor product that obeys −𝑡 = +𝑡 is zero.

5

Fact 3.6. Suppose that 𝐻 has dimension 𝑑. Then,

dim
(︁⋁︁

𝑘
)︁

=
(︃

𝑑 + 𝑘 − 1
𝑘

)︃
and dim

(︁⋀︁
𝑘
)︁

=
(︃

𝑑

𝑘

)︃
.

Let 𝑒1 . . . , 𝑒𝑑 be an orthonormal basis of 𝐻. Then, {𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑘
: 1 ≤ 𝑖1, . . . , 𝑖𝑘 ≤ 𝑑}

is an orthonormal basis of 𝐻⊗𝑘 with respect to the extended inner product.
Applying 𝑃∨𝑘 and 𝑃∧𝑘 to these basis vectors produce spanning sets for ⋁︀𝑘 and ⋀︀𝑘,

respectively. However, many of these symmetrized (anti-symmetrized) standard basis
vectors coincide. Removing such redundancies subsequently produces an orthonormal
basis of these subspaces. Counting their cardinality yields the following dimension
formula.

Proposition 3.7. Suppose that 𝐻 has dimension 𝑑. Then,

dim
(︁⋁︁

𝑘
)︁

=
(︃

𝑑 + 𝑘 − 1
𝑘

)︃
and dim

(︁⋀︁
𝑘
)︁

=
(︃

𝑑

𝑘

)︃
.

Note that these two subspaces in general do not span the entire tensor product
space 𝐻⊗𝑘 with 𝑘 ≥ 3:

dim
(︁⋁︁

𝑘
)︁

+ dim
(︁⋀︁

𝑘
)︁

=
(︃

𝑑 + 𝑘 − 1
𝑘

)︃
+
(︃

𝑑

𝑘

)︃
< 𝑑𝑘 = dim

(︁
𝐻⊗𝑘

)︁
.

Also, the dimension of the totally symmetric subspace grows very quickly as 𝑘 increases.
In contrast, the dimension of the totally anti-symmetric subspace achieves its maximum
for 𝑘 = ⌈𝑑/2⌉. Then, the dimension starts to decrease. A second extreme case is
achieved for 𝑘 = 𝑑:

dim
(︁⋀︁

𝑑
)︁

=
(︃

𝑑

𝑑

)︃
= 1.

For larger values of 𝑘, the subspace vanishes entirely. The following reformulation
explicitly points out that the range of 𝑃∨𝑑 is one-dimensional.

Lemma 3.8. Let 𝑒1, . . . , 𝑒𝑑 be an orthonormal basis of 𝐻. Then,

𝑃∧𝑑 = 𝑑!𝑃∧𝑑(𝑒1 ⊗ · · · ⊗ 𝑒𝑑)(𝑒1 ⊗ · · · ⊗ 𝑒𝑑)*𝑃∧𝑑 .

Proof. We may expand the identity on 𝐻 as I = ∑︀𝑑
𝑖=1 𝑒𝑖𝑒

*
𝑖 . Persistence and the fact

that 𝑃∧𝑑 is an orthogonal projector then imply

𝑃∧𝑑 =𝑃∧𝑑I⊗𝑑𝑃∧𝑑 =
𝑑∑︁

𝑖1,...,𝑖𝑑=1
𝑃∧𝑑(𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑑

)(𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑑
)*𝑃∧𝑑 .

Most of these extended standard basis vectors must vanish when projected onto ⋁︀𝑑.
Indeed, Lemma 3.5 ensures that the only non-vanishing contributions are permutations
of 𝑒1 ⊗ · · · ⊗ 𝑒𝑑. Up to signs all 𝑘! such vectors get projected onto the same vector,
namely 𝑃∧𝑘𝑒1 ⊗ · · · ⊗ 𝑒𝑑. Potential sign flips do not matter, however. Each of these
projected tensor products features twice in the expression and potential sign flips cancel
out.

6

We conclude this section with a powerful property of 𝑃∨𝑘 , 𝑃∧𝑘 and – more generally
– permutation operations.

Fact 3.9. Permutation operators commute with elementary tensor product operators:
𝑊𝜋 ∈ ℒ(𝐻⊗𝑘) for any 𝐴 ∈ ℒ(𝐻) and any 𝜋 ∈ 𝒮𝑘. In particular,

𝑃∨𝑘𝐴⊗𝑘 = 𝐴⊗𝑘𝑃∨𝑘 and 𝑃∧𝑘𝐴⊗𝑘 = 𝐴⊗𝑘𝑃∧𝑘 .

Intuitively, this makes sense. Tensor product operators 𝐴⊗𝑘 act identically on all
factors 𝐻 of 𝐻⊗𝑘. Permuting first and then applying this operator is equivalent to first
applying the operator and then permuting tensor factors.

4 The determinant
4.1 A tensor product formula for the determinant

Recall that the range of 𝑃∧𝑑 is one-dimensional. Moreover, Example 2.3 suggests a
connection between the projection of 𝐴⊗𝑑 onto this 1D-subspace and the determinant
(for 𝑑 = 2). The following definition extends this intuition to arbitrary dimensions 𝑑.

Definition 4.1 (The determinant). Suppose that 𝐻 has dimension 𝑑. For 𝐴 ∈ ℒ(𝐻) define

det(𝐴) = tr
(︁
𝑃∧𝑑𝐴⊗𝑑

)︁
.

It is easy to check that this formula is equivalent to the Leibniz formula for the
determinant. Let 𝑎1, . . . , 𝑎𝑑 ∈ 𝐻 denote the columns of 𝐴. Lemma 3.8 allows for
deducing the Leibniz formula from this definition:

det(𝐴) = tr
(︁
𝑃∧𝑑𝐴⊗𝑑

)︁
=
∑︁

𝜋∈𝒮𝑑

sign(𝜋)⟨𝑒1, 𝐴𝑒𝜋(1)⟩ · · · ⟨𝑒𝑑, 𝐴𝑒𝜋(𝑑)⟩. (2)

4.2 Properties of the determinant

All fundamental properties of the determinant can be established with relative ease in
this tensor product formalism.

Lemma 4.2 (Normalization). Let I ∈ ℒ(𝐻) denote the identity. Then, det(I) = 1.

Proof. The antisymmetric subspace ⋀︀𝑑 ⊂ 𝐻⊗𝑑 is one-dimensional. Therefore,

det(I) = tr
(︁
𝑃∧𝑑𝐼⊗𝑑

)︁
= tr(𝑃∧𝑑) = dim

(︁⋀︁
𝑑
)︁

=
(︃

𝑑

𝑑

)︃
= 1.

Proposition 4.3 (Invariance under basis changes). Let 𝑄 ∈ ℒ(𝐻) be invertible. Then,
det
(︀
𝑄𝐴𝑄−1)︀ = det(𝐴) for any 𝐴 ∈ ℒ(𝐻).

7

Proof. The projector 𝑃∧𝑑 commutes with 𝑄⊗𝑑, see Fact 3.9. Therefore

det
(︁
𝑄𝐴𝑄−1

)︁
=tr

(︁
𝑃∧𝑑𝑄⊗𝑑𝐴⊗𝑑(𝑄−1)⊗𝑑

)︁
= tr

(︁
𝑄⊗𝑑𝑃∧𝑑𝐴⊗𝑑(𝑄−1)⊗𝑑

)︁

=tr
(︂

𝑃∧𝑑𝐴⊗𝑑
(︁
𝑄−1𝑄

)︁⊗𝑑
)︂

= tr
(︁
𝑃∧𝑑𝐴⊗𝑑

)︁
= det(𝐴),

where we have also used cyclicity of the trace.

Corollary 4.4 (The determinant is the product of eigenvalues). Suppose that 𝐴 ∈ ℒ(𝐻)
is diagonalizable and has eigenvalues 𝜆1, . . . , 𝜆𝑑. Then, det(𝐴) = ∏︀𝑑

𝑖=1 𝜆𝑖.

Proof. Let 𝐴 = 𝑄𝐷𝑄−1 with 𝐷 = diag(𝜆1, . . . , 𝜆𝑑) be an eigenvalue decomposition.
Note that,

𝐷⊗𝑑𝑃∧𝑑𝑒1 ⊗ · · · ⊗ 𝑒𝑑 = 𝑃∧𝑑𝐷⊗𝑑𝑒1 ⊗ · · · ⊗ 𝑒𝑑 = 𝜆1 · · · 𝜆𝑑𝑃⋀︀𝑑𝑒1 ⊗ · · · ⊗ 𝑒𝑑.

Proposition 4.3 and Lemma 3.8 then imply

det(𝐴) = det(𝐷) = 𝑑!⟨𝑒1 ⊗ · · · ⊗ 𝑒𝑑, 𝑃∧𝑑𝐷⊗𝑑𝑃∧𝑑𝑒1 ⊗ · · · ⊗ 𝑒𝑑⟩
=𝜆1 · · · 𝜆𝑑𝑑!⟨𝑒1 ⊗ · · · ⊗ 𝑒𝑑, 𝑃∧𝑑I⊗𝑑𝑃∧𝑑𝑒1 ⊗ · · · ⊗ 𝑒𝑑⟩
=𝜆1 · 𝜆𝑑 det(I).

Proposition 4.5 (The determinant is multiplicative). Fix 𝐴, 𝐵 ∈ ℒ(𝐻). Then, det(𝐴𝐵) =
det(𝐴) det(𝐵).

Proof. Recall that 𝑃∧𝑑 is a rank-one projector that is proportional to the (projected)
outer product 𝑑!𝑃∧𝑑 �⃗��⃗�*𝑃∧𝑑 . Here, we have introduced the short-hand notation �⃗� =
𝑒1 ⊗ · · · ⊗ 𝑒𝑑 ∈ 𝐻⊗𝑑. Also, 𝑃∧𝑑 commutes with 𝐴⊗𝑑. Therefore,

det(𝐴𝐵) =tr
(︁
𝑃∧𝑑(𝐴𝐵)⊗𝑑

)︁
= tr

(︁
𝑃∧𝑑𝐴⊗𝑑𝑃∧𝑑𝐵⊗𝑑

)︁

=(𝑑!)2tr
(︁
𝑃∧𝑑 �⃗��⃗�*𝑃∧𝑑𝐴⊗𝑑𝑃∧𝑑 �⃗��⃗�*𝑃∧𝑑𝐵⊗𝑑

)︁

=𝑑!⟨�⃗�, 𝑃∧𝑑𝐴⊗𝑑𝑃∧𝑑 �⃗�⟩𝑑!⟨�⃗�, 𝑃∧𝑑𝐵⊗𝑑𝑃∧𝑑 �⃗�⟩
=tr

(︁
𝑃∧𝑑𝐴⊗𝑑

)︁
tr
(︁
𝑃∧𝑑𝐵⊗𝑑

)︁
= det(𝐴) det(𝐵).

The following useful fact follows directly from multiplicativity.

Corollary 4.6. Let 𝑄 ∈ ℒ(𝐻) be invertible. Then, det
(︀
𝑄−1)︀ = det(𝑄).

Other fundamental properties are evident from the tensor product construction
itself. Tensor products of vectors are multi-linear (i.e. linear in each factor) and 𝑃∧𝑑

anti-symmetrizes. For the determinant, these fundamental properties ensure

8

1. Multi-linearity: det(𝐴) is linear in the columns 𝑎𝑗 = 𝐴𝑒𝑗 of 𝐴.
2. Antisymmetry: Exchanging two columns of 𝐴 negates the determinant.

These properties completely characterize the determinant and rule out any other
possibility.

Fact 4.7 (Uniqueness). The determinant is the unique matrix function that is i) multi-
plicative, ii) multi-linear, iii) antisymmetric and iv) obeys det(I) = 1.

5 The permanent
The permanent is the symmetric cousin of the determinant. It is typically defined
analogously to the Leibniz formula (2):

perm(𝐴) =
∑︁

𝜋∈𝒮𝑑

⟨𝑒1, 𝐴𝑒𝜋(1)⟩ · · · ⟨𝑒𝑑, 𝐴𝑒𝜋(𝑑)⟩.

Definition 5.1 (The permanent). Suppose that 𝐻 has dimension 𝑑. For 𝐴 ∈ ℒ(𝐻) define

perm(𝐴) = 𝑑!⟨𝑒1 ⊗ · · · ⊗ 𝑒𝑑, 𝑃∨𝑑𝐴⊗𝑑𝑃∨𝑑𝑒1 ⊗ · · · ⊗ 𝑒𝑑⟩.

This definition in terms of tensor products readily implies desirable features. The
permanent is multi-linear and symmetric under exchanging columns of 𝐴.

However, there is also a crucial difference. While the range of 𝑃∧𝑑 is one-dimensional,
the range of 𝑃∨𝑑 is huge. This prevents us from rewriting perm(𝐴) as the trace of
𝑃∨𝑑𝐴⊗𝑑. This clever trick, however, was the basis for establishing multiple nice features
of the determinant. For the permanent, such an approach is impossible. In general,
rather little is known about the permanent.

The permanent is also notoriously difficult to compute. This computational dis-
crepancy between det (easy to compute) and perm (hard to compute) forms the basic
dichotomy of algebraic complexity theory (think P vs NP). Current quantum supremacy
experiments (“boson sampling”) are also based on the computational hardness associated
with computing (generic) permanents.

Lecture 05: Haar integration

Scribe: Oguzhan Teke

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
April 15, 2019

1 Agenda
∙ Polynomials and Tensors
∙ Closed form expression for Haar Integrals
∙ Schur-Weyl Duality

2 Motivational Examples
In order to motivate Haar integration, we start this lecture by studying two simple
examples. In this regard, we consider the 2-dimensional complex unit sphere

S1 =
{︀
𝑥 ∈ C2 | ⟨𝑥, 𝑥⟩ = 1

}︀ ⊆ C2, (1)

and two homogeneous polynomials:

𝑝1(𝑥, �̄�) = 𝑥1 �̄�1 + 𝑥2 �̄�2 and 𝑝2(𝑥, �̄�) = 𝑥1 �̄�2 + 𝑥2 �̄�1. (2)

The task is to integrate these polynomials over S1. A moment of thought reveals that
the first polynomial is just the squared radius: 𝑝1(𝑥, �̄�) = ⟨𝑥, 𝑥⟩ = 1. This polynomial
is constant on S1 and we readily conclude

∫︁

S1
𝑝1(𝑣, 𝑣) d𝜇(𝑣) = 1.

The second polynomial flips its sign under negating one corrdinate. Set 𝑦 = (𝑥1, −𝑥2).
Then 𝑝(𝑦, 𝑦) = −𝑝(𝑥, �̄�). This antisymmetry requires that the integral over the entire
sphere must vanish: ∫︁

S1
𝑝2(𝑣, 𝑣) d𝜇(𝑣) = 0.

Note that we could only evaluate these integration formulas by using clever symmetry
tricks. This approach becomes more challenging for higher order polynomials, e.g.
𝑝2(𝑥, �̄�)2.

Haar integration provides a general means for integrating homogeneous polynomials
of any degree over complex unit spheres in any dimensions.

3 Polynomials and Tensors
Throughout this course we restrict our attention to homogeneous polynomials.

Definition 3.1. A polynomial 𝑝(𝑥) of degree 𝑘 is homogeneous if all monomials have
degree 𝑘. We denote the space of such polynomials by Hom(𝑘)(𝑥).

2

This restriction is not very severe. Any degree-𝑘 polynomial in 𝑑 variables can be
represented as a homogeneous polynomial of the same degree in 𝑑 + 1 variables, where
we fix the last variable to one:

𝑝(𝑥1, . . . , 𝑥𝑑) = 𝑝hom(𝑥1, . . . , 𝑥𝑑, 1).

3.1 Homogeneous polynomials and 𝐻⊗𝑘

In fact, there is a close connection between homogeneous polynomials of degree 𝑘 and
tensor product spaces of order 𝑘. Let 𝐻 = C𝑑 be a 𝑑-dimensional complex vector space
endowed with the standard inner product. Fix 𝑡 ∈ 𝐻⊗𝑘 and define

𝑝𝑡(𝑥) = ⟨𝑡, 𝑥 ⊗ · · · ⊗ 𝑥⟩ for all 𝑥 ∈ 𝐻.

Here, ⟨·, ·⟩ denotes the extended inner product on 𝐻⊗𝑘. Recall from Lecture 2, that we
can expand 𝑡 as a linear combination of elementary tensor products:

𝑡 =
𝑟∑︁

𝑖=1
𝛼𝑖 𝑏

(1)
𝑖 ⊗ · · · ⊗ 𝑏

(𝑘)
𝑖 , 𝑏

(1)
𝑖 , . . . , 𝑏

(𝑘)
𝑖 ∈ 𝐻.

In turn, 𝑝(𝑥) becomes

𝑝𝑡(𝑥) =
𝑟∑︁

𝑖=1
𝛼𝑖 ⟨𝑏(1)

𝑖 ⊗ · · · ⊗ 𝑏
(𝑘)
𝑖 , 𝑥 ⊗ · · · ⊗ 𝑥⟩

=
𝑟∑︁

𝑖=1
𝛼𝑖 ⟨𝑏(1)

𝑖 , 𝑥⟩ · · · ⟨𝑏(𝑘)
𝑖 , 𝑥⟩ =

𝑟∑︁

𝑖=1
𝛼𝑖

𝑘∏︁

𝑗=1
⟨𝑏(𝑗)

𝑖 , 𝑥⟩.

It is easy to check that this is a homogeneous polynomial of degree 𝑘 in 𝑑 complex
variables 𝑥 = (𝑥1, . . . , 𝑥𝑑).

A natural question is to ask whether this correspondence (between the tensor space
of order 𝑘 and the homogeneous polynomials of degree 𝑘) is one-to-one? The answer
is no in general. The tensor product 𝑥 ⊗ · · · ⊗ 𝑥 is invariant under permuting tensor
factors. More generally, let

𝑃∨𝑘 = 1
𝑘!
∑︁

𝜋∈𝒮𝑘

𝑊𝜋

denote the projector onto the totally symmetric subspace ⋁︀𝑘 ⊂ 𝐻⊗𝑘. Fix 𝑡 ∈ 𝐻⊗𝑘.
Then,

𝑝𝑡(𝑥) =⟨𝑡, 𝑥 ⊗ · · · ⊗ 𝑥⟩ = ⟨𝑡, 𝑃∨𝑘 𝑥 ⊗ · · · ⊗ 𝑥⟩ = ⟨𝑃∨𝑘 𝑡, 𝑥 ⊗ · · · ⊗ 𝑥⟩
=𝑝𝑃∨𝑘 𝑡(𝑥).

Here, we have used the fact that P∨𝑘 is the projection (hence, unitary) onto the
symmetric tensor space, and 𝑥 ⊗ · · · ⊗ 𝑥 belongs to this subspace. This result shows
that both 𝑡 and 𝑃∨𝑘 𝑡 correspond to the same polynomial. This implies that the
correspondence between 𝐻⊗𝑘 and Hom(𝑘)(𝑥) is in general not one-to-one. It does,
however, become one-to-one if we restrict our attention to the totally symmetric
subspace. The following proposition presents this result formally:

3

Proposition 3.2. There is a one-to-one correspondence between Hom(𝑘)(𝑥) and ⋁︀𝑘 ∈ 𝐻⊗𝑘.

Proof sketch. We note that

dim
(︁
Hom(𝑘)(𝑥)

)︁
=
(︃

𝑑 + 𝑘 − 1
𝑘

)︃
= dim

(︂⋁︁𝑘
)︂

, (3)

and there is a one-to-one correspondence between the extended standard basis vectors
and monomials:

𝑝𝑒𝑖1 ⊗···⊗𝑒𝑖𝑘
(𝑥) = ⟨𝑒𝑖1 , 𝑥⟩ · · · ⟨𝑒𝑖𝑘

, 𝑥⟩ = 𝑥𝑖1 · · · 𝑥𝑖𝑘
.

Monomials generate Hom(𝑘), while the extended standard basis spans ⋁︀(𝑘). Both
dimensions match up which can be used to establish a one-to-one correspondence
formally.

3.2 Doubly homogeneous polynomials and ℒ(𝐻⊗𝑘)
Definition 3.3. Define Hom(𝑘)(𝑥, �̄�) to be the space of doubly homogeneous polynomials
over C, i.e. polynomials that are are 𝑘-homogeneous in 𝑥 and 𝑘-homogeneous in �̄�:

Hom(𝑘)(𝑥, �̄�) = Hom(𝑘)(𝑥) Hom(𝑘)(�̄�). (4)

A typical example for a doubly homogeneous polynomial is the standard Euclidean
norm ⟨𝑥, 𝑥⟩ and its integer powers.

Theorem 3.4. There is a one-to-one correspondence between Hom(𝑘)(𝑥, �̄�) and ℒ
(︁⋁︀𝑘

)︁
–

the space of linear operators from ⋁︀𝑘 to itself.

Proof Sketch. Let 𝑝, 𝑞 ∈ Hom(𝑘)(𝐻). Then, 𝑞(�̄�) 𝑝(𝑥) ∈ Hom(𝑘)(𝑥, �̄�). So,

𝑞(�̄�) 𝑝(𝑥) =⟨𝑥 ⊗ · · · ⊗ 𝑥 , 𝑡𝑞⟩ ⟨𝑡*
𝑝, 𝑥 ⊗ · · · ⊗ 𝑥 ⟩ (5)

=⟨𝑥 ⊗ · · · ⊗ 𝑥 𝑡𝑞 𝑡*
𝑝 𝑥 ⊗ · · · ⊗ 𝑥⟩ (6)

for some 𝑡𝑞, 𝑡𝑝 ∈ ⋁︀𝑘. Rank-one operators of the form 𝑡𝑞 𝑡*
𝑝 span the space of all linear

operators. The dimension of this space is dim(⋁︀𝑘)2 =
(︀𝑑+𝑘−1

𝑘

)︀2 which coincides with the
space of doubly homogeneous polynomials (

(︀𝑑+𝑘−1
𝑘

)︀
degrees of freedom for homogeneous

polynomials in �̄� and 𝑥 each).

Corollary 3.5. Fix 𝐴 ∈ ℒ(⋁︀𝑘) (think of it as 𝑃∨𝑘𝐴𝑃∨𝑘 with 𝐴 ∈ ℒ(𝐻⊗𝑘)). Then,

𝑝𝐴(𝑥, �̄�) = ⟨𝑥 ⊗ · · · ⊗ 𝑥 , 𝐴
(︀
𝑥 ⊗ · · · ⊗ 𝑥

)︀⟩ = tr
(︁
𝐴
(︀
𝑥𝑥*)︀⊗𝑘

)︁
, (7)

is doubly-homogeneous of degree 𝑘. Moreover, every polynomial in Hom(𝑘)(𝑥, �̄�) has
this form.

4

4 Haar integration
4.1 Motivation

Haar-integration provides closed form expressions for integrating doubly homogeneous
polynomials over complex unit spheres. It may be viewed as a complex generalization
of Gaussian integration. At the heart is the correspondence between Hom(𝑘)(𝑥, �̄�) and
ℒ(𝐻⊗𝑘), see Corollary 3.5. For now, let d𝜇(𝑥) be an arbitrary integration mesure.
Then,

∫︁
𝑝𝐴(𝑣, 𝑣) d𝜇(𝑣) =

∫︁
tr
(︁
𝐴(𝑣𝑣*)⊗𝑘

)︁
d𝜇(𝑣) = tr

(︂
𝐴

∫︁
(𝑣𝑣*)⊗𝑘 d𝜇(𝑣)

)︂
.

This reformulation has deep implications. A closed-form expression for

𝐻(𝑘) =
∫︁

(𝑣𝑣*)⊗𝑘 d𝜇(𝑣) ∈ ℒ(𝐻⊗𝑘) (8)

would allow us to compute integrals of arbitrary polynomials by contracting tensor
product operators: ∫︁

𝑝𝐴(𝑣, 𝑣) d𝜇(𝑣) = tr
(︁
𝐴 𝐻(𝑘)

)︁
.

Haar-integration achieves precisely this goal for the normalized, unitarily invariant
measure d𝜇(𝑣) on the complex unit sphere S𝑑−1 ⊂ 𝐻. The exceedingly high degree of
symmetry allows for deriving an analytic expression for 𝐻(𝑘).

Before doing so, a few comments are in order. 𝜇 stands for a measure on S𝑑−1 that
inherits nice properties from C𝑑. Normalization means that 𝜇

(︁
S𝑑−1

)︁
= 1. Finally, and

most importantly for our goals, unitary invariance means that the measure is invariant
under any unitary transformation 𝑈 :

𝜇(𝑈𝒜) = 𝜇(𝒜) for every Borel set 𝒜 ⊆ S𝑑−1.

One can show that there is only one measure on S𝑑−1 with these desirable properties.
This measure is called the Haar measure.

Informally, the Haar measure assigns an infinitesimally small weight to each point
𝑥 ∈ S𝑑−1. This assignment is fair in the sense that no vector is weighted less (or more)
than any other vector.

4.2 Reformulation of the integration formula

The unitary operators on 𝐻 form a nice group U(𝑑). This group is unimodular and
carries the structure of a Lie group. Importantly, one can also endow U(𝑑) with a
normalized, unitarily invariant measure d𝑈 . In fact, this Haar measure on U(𝑑) induces
the unitarily invariant measure on S𝑑−1. Indeed, we can think of the sphere as the
set of all possible rotations of a fixed starting vector 𝑣0 ∈ S𝑑−1, e.g. the “north pole.”
The precise choice of starting point is irrelevant, because both measures are unitarily

5

invariant. We can use this reasoning to rewrite 𝐻(𝑘) in the following fashion:

𝐻(𝑘) =
∫︁

S𝑑−1
(𝑣𝑣*)⊗𝑘 d𝜇(𝑣) =

∫︁

U(𝑑)
(𝑈𝑣0𝑣*

0𝑈*)⊗𝑘 d𝜇(𝑈)

=
∫︁

U(𝑑)
𝑈⊗𝑘(𝑣0𝑣*

0)⊗𝑘(𝑈*)⊗𝑘 d𝜇(𝑈).

This reformulation highlights an interesting property of 𝐻(𝑘).

Lemma 4.1. The operator 𝐻⊗𝑘 ∈ ℒ(𝐻⊗𝑘) defined in Eq. (8) commutes with any
synchronized change of basis in 𝐻:

𝐻(𝑘)𝑉 ⊗𝑘 = 𝑉 ⊗𝑘𝐻(𝑘) for all 𝑉 ∈ U(𝑑).

Proof. Fix 𝑉 ∈ U(𝑑). Unitary invariance of the Haar measure implies d(𝑈) = d(𝑉 𝑈).
This allows us to perform a simple change of integration variables 𝑈 ′ = 𝑈 ↦→ 𝑉 𝑈 that
ensures

𝑉 ⊗𝑘𝐻(𝑘) =
∫︁

U(𝑑)
(𝑉 𝑈)⊗𝑘(𝑣0𝑣*

0)⊗𝑘(𝑈*)⊗𝑘 d(𝑈)

=
∫︁

U(𝑑)
(𝑈 ′)⊗𝑘(𝑣0𝑣*

0)⊗𝑘((𝑉 * 𝑈 ′)*)⊗𝑘 d(𝑈 ′)

=
∫︁

𝑈(𝑑)
(𝑈 ′)⊗𝑘(𝑣0𝑣*

0)⊗𝑘((𝑈 ′)*)⊗𝑘 d𝜇(𝑈 ′)𝑉 ⊗𝑘 = 𝐻(𝑘)𝑉 ⊗𝑘.

4.3 Haar integration formula for degree 𝑘 = 1
Theorem 4.2. Set 𝐻 = C𝑑 and let d𝜇(𝑣) and d𝜇(𝑈) denote the Haar measures on S𝑑−1

and U(𝑑), respectively. Then,

𝐻(1) =
∫︁

U(𝑑)
𝑈𝑣0𝑣*

0𝑈* d𝜇(𝑈) = 1
𝑑

I.

Proof. Lemma 4.1 implies that 𝐻(1) must obey 𝑈𝐻(1)𝑈* = 𝐻(1) for any 𝑈 ∈ U(𝑑).
In other words: 𝐻(1) must have the same matrix representation for any choice of basis.
There is only one operator with this property – the identity I ∈ ℒ(𝐻). The pre-factor
𝑑−1 follows from taking the trace:

tr(𝐻(1)) =
∫︁

U(𝑑)
tr(𝑈𝑣0𝑣*

0𝑈*)d𝜇(𝑈) = ⟨𝑣0, 𝑣0⟩
∫︁

U(𝑑)
d𝜇(𝑈) = 1.

This closed-form expression already allows us to compute integrals of doubly homo-
geneous polynomials of degree one:

∫︁

S𝑑−1
𝑝𝐴(𝑣, 𝑣) d𝜇(𝑣) = tr

(︁
𝐴𝐻(1)

)︁
= tr(𝐴)

𝑑
.

6

The two example polynomials from the beginning of this lecture fall into this category:

𝑝1(𝑥, �̄�) = 𝑝𝐴1(𝑥, �̄�) = tr(𝐴1 𝑥 𝑥*) with 𝐴1 = I =
(︃

1 0
0 1

)︃
, (9)

𝑝2(𝑥, �̄�) = 𝑝𝐴2(𝑥, �̄�) = tr(𝐴2 𝑥 𝑥*) with 𝐴2 =
(︃

0 1
1 0

)︃
. (10)

Theorem 4.2 now allows us to quickly compute the associated integrals. Set 𝑑 = 2 and
compute

∫︁

S1
𝑝1(𝑣, 𝑣) d𝜇(𝑣) =tr(𝐴1)

2 = 1,

∫︁

S1
𝑝2(𝑣, 𝑣) d𝜇(𝑣) =tr(𝐴2)

2 = 0.

4.4 Haar integration formula for arbitrary degree
The approach from the previous subsection can be extended to establish closed form
expressions for 𝐻(𝑘) with 𝑘 ≥ 2.

Theorem 4.3 (Haar integration formula). Set 𝐻 = C𝑑 and let d𝜇(𝑣) and d𝜇(𝑈) denote
the Haar measures on S𝑑−1 ⊂ 𝐻 and U(𝑑), respectively. Then, for any 𝑘 ≥ 2

𝐻(𝑘) =
∫︁

S𝑑−1
(𝑣𝑣*)⊗𝑘 d𝜇(𝑣) =

∫︁

U(𝑑)
(𝑈𝑣0𝑣*

0𝑈*)⊗𝑘 d𝜇(𝑈) =
(︃

𝑑 + 𝑘 − 1
𝑘

)︃−1

𝑃∨𝑘 .

Here, 𝑃∨𝑘 = 1
𝑘!
∑︀

𝜋∈𝒮𝑘
𝑊𝜋 ∈ ℒ(𝐻⊗𝑘) denotes the projector onto the totally symmetric

subspace and
(︀𝑑+𝑘−1

𝑘

)︀
is the dimension of its range ⋁︀𝑘 ⊂ 𝐻⊗𝑘.

The proof of this statement is based on deep results from algebra (representation
theory). Recall that we can identify permutations 𝜋 ∈ 𝒮𝑘 with operators that permute
tensor factors:

𝑊𝜋 : 𝑥1 ⊗ · · · ⊗ 𝑥𝑘 ↦→ 𝑥𝜋−1(1) ⊗ · · · ⊗ 𝑥𝜋−1(𝑘)

and linearly extended to all of 𝐻⊗𝑘. These operators are unitary and respect the group
composition rule (see HW I):

𝑊 *𝜋 = 𝑊𝜋−1 = 𝑊 −1
𝜋 and 𝑊𝜋𝑊𝜏 = 𝑊𝜋∘𝜏 for all 𝜋, 𝜏 ∈ 𝒮𝑘.

This means that the 𝑊𝜋 form a unitary representation of the symmetric group 𝒮𝑘 – a
nice, finite group – on the “representation space” 𝐻⊗𝑘.

In a similar fashion, the map 𝑈 ↦→ 𝑈⊗𝑘 forms a unitary representation of U(𝑑) – a
nice Lie group – on 𝐻⊗𝑘. Crucially, Lemma 4.1 ensures that these two representations
always commute:

[︁
𝑈⊗𝑘, 𝑊𝜋

]︁
= 𝑈⊗𝑘𝑊𝜋 − 𝑊𝜋𝑈⊗𝑘 = 0 for all 𝜋 ∈ 𝒮𝑘, 𝑈 ∈ U(𝑑).

7

This commutation relation has profound consequences. A deep result from algebra
(representation theory) states that every matrix that commutes with all 𝑈⊗𝑘 must be
a linear combination of permutation operators, and vice versa. More precisely: the
permutation operators generate the commutant of

{︁
𝑈⊗𝑘 : 𝑈 ∈ U(𝑑)

}︁
and vice versa.

We refer to Matthias Christandl’s PhD thesis for a short, detailed and insightful analysis
of these properties and borrow the following result:

Theorem 4.4. Let 𝑋 ∈ ℒ(𝐻⊗𝑘) be an operator that commutes with any unitary of the
form 𝑈⊗𝑘. Then, 𝑋 must be a linear combination of permutation operators:

𝑋 =
∑︁

𝜋∈𝒮𝑘

𝑐𝜋𝑊𝜋.

A proof of this claim would go beyond the scope of this lecture. It follows from the
double commutant theorem and exploiting both the finite group structure of 𝒮𝑘 and the
nice Lie group structure of U(𝑑). This double-commutant theorem allows us to readily
deduce the Haar integration formula.

Proof of Theorem 4.3. Lemma 4.1 implies that 𝐻(𝑘) must commute with every tensor
product unitary 𝑈⊗𝑘. Theorem 4.4 then ensures that this operator must be a linear
combination of permutations:

𝑋 =
∑︁

𝜋∈𝒮𝑘

𝑐𝜋𝑊𝜋. (11)

Next, note that there is additional symmetry present: 𝐻(𝑘) is also invariant under any
permutations. Fix 𝜋 ∈ 𝒮𝑘 and observe,

𝑊𝜋𝐻(𝑘) =
∫︁

S𝑑−1
𝑊𝜋(𝑣𝑣*)⊗𝑘 d𝜇(𝑣) =

∫︁

S𝑑−1

(︁
𝑊𝜋𝑣⊗𝑘

)︁
(𝑣*)⊗𝑘 d𝜇(𝑣)

=
∫︁

S𝑑−1
(𝑣𝑣*)⊗𝑘 d𝜇(𝑣) = 𝐻(𝑘).

This invariance is only possible if all the expansion coefficients in Eq. (11) are the same:

𝐻(1) =
∑︁

𝜋∈𝒮𝑘

𝑐𝑊𝜋 = 𝑐
∑︁

𝜋∈𝒮𝑘

𝑊𝜋 = 𝑐 𝑃∨𝑘 .

Finally, take the trace on both sides to specify this constant:

𝑐

(︃
𝑑 + 𝑘 − 1

𝑘

)︃
= tr(𝑐 𝑃∨𝑘) = tr

(︁
𝐻(𝑘)

)︁
= 1.

4.5 Closed form expressions for integrating homogeneous polynomials

Corollary 4.5. Let 𝑝𝐴(𝑥, �̄�) = tr(𝐴 𝑥𝑥*) be an arbitrary polynomial in Hom(𝑘)(𝑥, �̄�).
Let d𝜇(𝑣) be the Haar measure on the complex unit sphere S𝑑−1 ⊂ C𝑑. Then,

∫︁

S𝑑−1
𝑝𝐴(𝑣, 𝑣) d𝜇(𝑣) =

(︃
𝑑 + 𝑘 − 1

𝑘

)︃−1

tr(𝐴 𝑃∨𝑘).

8

Closed form expressions for such integration formulas have a variety of applications.
We will discuss several of them in future lectures. For now, we content ourselves with
integrating the squares of the homogeneous polynomials defined in Eq. (2):

𝑝𝑖(𝑥, �̄�)2 = tr(𝐴𝑖 𝑥𝑥*)2 = tr
(︁
𝐴⊗2

𝑖 (𝑥𝑥*)⊗2
)︁
.

Set 𝑑 = 2 and apply Corollary 4.5 to conclude
∫︁

S1
𝑝𝑖(𝑣, 𝑣) d𝜇(𝑣) = tr

(︁
𝐴⊗2

𝑖 𝐻(2)
)︁

= 1
3 tr

(︁
𝐴⊗2

𝑖 𝑃∨2

)︁
,

because
(︀𝑑+1

2
)︀

= 3
2 = 3. Next, use 𝑃∨2 = 1

2
(︀
I⊗2 + 𝐹

)︀
, where 𝐹 : 𝑥 ⊗ 𝑦 ↦→ 𝑦 ⊗ 𝑥 denotes

the flip operator. This ensures,

tr
(︁
𝐴⊗2

𝑖 𝑃∨2

)︁
=1

2
(︁
tr
(︁
𝐴𝑖I⊗2

)︁
+ tr

(︁
𝐴⊗2

𝑖 𝐹
)︁)︁

= 1
2
(︁
tr(𝐴𝑖)2 + tr

(︁
𝐴2

𝑖

)︁)︁
,

and we can insert the operator expressions from Equations (9) and (10) to get concrete
numbers:

∫︁

S1
𝑝1(𝑣, 𝑣)2 d𝜇(𝑣) = 1

6
(︁
tr(𝐴1)2 + tr

(︁
𝐴2

1
)︁)︁

= 1
6
(︁
22 + 2

)︁
= 1,

∫︁

S1
𝑝2(𝑣, 𝑣)2 d𝜇(𝑣) = 1

6
(︁
tr(𝐴2)2 + tr

(︁
𝐴2

2
)︁)︁

= 1
6(0 + 2) = 1

3 .

Lecture 06: Entanglement is ubiquitous

Scribe: Jiajie Chen

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
April 17, 2019

1 Agenda
1. Pure states and entanglement
2. Almost all pure states are entangled
3. Proof:

(a) Concentration
(b) Discretization
(c) Union bound

2 Pure quantum states and entanglement
2.1 Pure states

Fix 𝐻 = C𝑑 and endow it with the standard inner product. Recall that quantum
mechanical systems are described by density matrices:

𝜌 ∈ S(𝐻) = {𝑋 ∈ ℒ(𝐻) : 𝑋* = 𝑋, 𝑋 ⪰ 0, (I, 𝑋) = 1}.

Density matrices are the SDP-generalization of 𝑑-variate probability vectors:

𝑝 ∈ Δ𝑑−1 =
{︁

𝑥 ∈ R𝑑 : 𝑥 ≥ 0, ⟨1, 𝑥⟩ = 1
}︁

.

Pure probability vectors correspond to extreme points of this convex set: 𝑝 = 𝑒𝑘

for 1 ≤ 𝑘 ≤ 𝑑. These represent deterministic distributions. Every probability vector
corresponds to a convex mixture of these extreme distributions.

The natural quantum analogue is captured by the following definition.

Definition 2.1 (pure state). A density matrix 𝜌 ∈ 𝒮(𝐻) is pure if and only if rank(𝜌) = 1,
or equivalently: 𝜌 = 𝑢𝑢* for 𝑢 ∈ 𝐻 obeying ⟨𝑢, 𝑢⟩ = 1. We call such density matrices
pure states.

Let S(𝐻) denote the complex unit sphere in 𝐻 = C𝑑:

S(𝐻) = {𝑥 ∈ 𝐻 : ⟨𝑥, 𝑥⟩ = 1} ⊂ 𝐻.

The following properties assert that pure states really mimic pure (deterministic)
probability vectors:

∙ Pure states form the boundary of the convex set 𝒮(𝐻).

2

∙ Every density matrix corresponds to a convex mixture of pure states:

S(𝐻) = conv{𝑢𝑢* : 𝑢 ∈ S(𝐻)}

∙ Every density matrix corresponds to the marginalization of a larger pure state:

𝜌 = tr2(𝑢𝑢*) for some 𝑢 ∈ S
(︁
𝐻⊗2

)︁
.

Proofs of these claims are part of Exercise I. In summary: Pure states are the “most
extreme” density matrices. Most quantum phenomena+tricks assume their “purest”
form for pure states. Their extension to general density matrices is then achieved by
convex mixtures. These tend to obfuscate the original properties. An extreme example
is the maximally mixed state:

𝜌0 =
∫︁

⟨𝑢,𝑢⟩=1
𝑢𝑢*d𝜇(𝑢) = 1

𝑑
I.

This is the “most useless” state conceivable. The outcome of any quantum measurement
{𝐻𝑎 : 𝑎 ∈ 𝐴} is maximally random:

Pr[𝑎|𝜌0] = (𝐻𝑎, 𝜌0) = tr(𝐻𝑎)
𝑑

for all 𝑎 ∈ 𝐴.

Such outcome probabilities can typically be “simulated” by tossing conventional coins.
2.2 Entanglement for pure states
Suppose that a quantum mechanical system is comprised of two smaller system with
dimensions 𝑑1 and 𝑑2, respectively. Set 𝐻1 = C𝑑1 and 𝐻2 = C𝑑2 . Then, the joint
quantum state is an element of

𝜌 ∈ S(𝐻1 ⊗ 𝐻2) ⊂ ℒ(𝐻1) ⊗ ℒ(𝐻2) ≃ ℒ(𝐻1 ⊗ 𝐻2).

Pure states assume the following form:

𝜌joint = 𝑢𝑢* for 𝑢 ∈ S(𝐻1 ⊗ 𝐻2) ≃ S(𝐻),

where 𝐻 = 𝐻1 ⊗ 𝐻2 ≃ C𝐷 with 𝐷 = 𝑑1𝑑2.
Recall that there are three possibilities for joint quantum states:

1. Product states: 𝜌joint = 𝜎1 ⊗ 𝜎2 with 𝜎1 ∈ S(𝐻1) and 𝜎2 ∈ S(𝐻2). These behave
like independent distributions.

2. Separable states: 𝜌joint ∈ S(𝐻)1)⊗̂S(𝐻2) = conv(𝜎1 ⊗ 𝜎2 : 𝜎1 ∈ S(𝐻1), 𝜎2 ∈ S(𝐻2)}.
These correspond to convex mixtures of product states. In classical probability
theory, these convex mixtures reach “everything”.

3. Entangled states: everything that is not separable.

Lemma 2.2. A joint pure state 𝜌joint = 𝑢𝑢* is separable if and only if it is a tensor
product of pure states: 𝜌joint = 𝑎𝑎* ⊗ 𝑏𝑏*, 𝑎 ∈ S(𝐻1), 𝑏 ∈ S(𝐻2).

3

Proof. It is clear that tensor products of pure states are pure product states: 𝑎𝑎*⊗𝑏𝑏* ≃
(𝑎 ⊗ 𝑏)(𝑎 ⊗ 𝑏)*. These are the only pure product states – the rank constraint is very
stringent. Indeed, convex mixtures of pure product states necessarily increase the rank –
density matrices are psd. So, the intersection of the set of all separable states with the
(non-convex) set of all joint pure states returns the (non-convex) set of all pure product
states.

3 Almost all pure states are entangled
A well-known result in quantum states that “almost all states are maximally entangled”.
The typical argument is as follows: Remember our candidate for a entangled state from
Lecture 3 (𝐻1 ≃ 𝐻2):

Ω = 1
𝐷

vec(I)vec(I)* = 1
𝐷

,

This state is entangled and has the following interesting property:

tr1(Ω) = tr2(Ω) = 1
𝑑

I = 𝜌0.

Although the joint state is pure, marginalizations produce the maximally mixed state
(“garbage”). This is indicative of a very strong correlation in the joint system. Pure
states with this property are called maximally entangled. Now, suppose that we choose
𝑢 ∈ S(𝐻1 ⊗ 𝐻2) uniformly from the Haar measure. Then,

‖tr2(𝑢𝑢*) − 1
𝑑1

I‖1

is small with exceedingly high probability. Proving this will be part of Exercise II. Since
the Haar-measure is fair in the sense that it assigns the same infinitesimal weight to any
pure state, we can conclude the following quantitative statement: the marginalization
of almost every pure state results is very close to the maximally mixed state.

Remark 3.1. The trace distance is a natural metric for quantifying deviations among
density matrices. Helstrom’s theorem (Lecture I) assigns an operational meaning to this
quantity: it is proportional to the optimal bias achievable when trying to distinguish
the two states in question with a single measurement.

Today, I want to derive a different statement that points in a similar direction.
Almost every joint pure state is very far away from any product state.

Theorem 3.2. Set 𝐻 = 𝐻1 ⊗ 𝐻2 (dim(𝐻1) = 𝑑1, dim(𝐻2) = 𝑑2, dim(𝐻) = 𝑑1𝑑2).
Choose 𝑢 ∈ S(𝐻) uniformly from the complex unit sphere (Haar random). Then,

Pr
[︃

inf
𝑎∈S(𝐻1),𝑏∈S(𝐻2)

‖𝑢𝑢* − 𝑎𝑎* ⊗ 𝑏𝑏*‖1 ≤ 1
]︃

≤ 2 exp
(︂

4.5(𝑑1 + 𝑑2) − 7𝑑1𝑑2
32

)︂

We will use this statement to introduce a very powerful proof technique by example.
It is based on three fundamental steps:

4

∙ Concentration of individual problem instances (Haar-randomness)
∙ Discretization: Find covering nets for 𝒮(𝐻1) and 𝒮(𝐻2) and combine them to get

a covrering net for all pure product sates in S(𝐻). Finite covering nets allow us
to move from controlling an infimum to controlling a minimum.

∙ Apply a union bound to the (discretized) minimum and use Haar-concentration
of each instance to counter-balance the number of different instances.

Although not optimal (in terms of constants) and perhaps cumbersome, it is very
versatile and can be applied to a variety of problems. Today, we employ it to show that
almost every pure state is entangled. Next week, we will employ it to show that almost
every pure state is useless for quantum computation. Other examples include:

1. (Quantum): Every quantum channel admits an accurate approximation (“sketch”)
that has low Kraus rank (Lancien and Winter)

2. (Quantum): Almost every quantum state (unitary channel) has high circuit
“complexity” (i.e. takes a long time to generate).

3. (Classical): Randomess in the measurement design allows for recovering sparse
vectors and low-rank matrices efficiently from very few measurements.

4. (Classical): control the maximum eigenvalue of a random matrix.

4 Proof of Theorem 3.2
4.1 Preliminaries

Theorem 4.1 (Markov’s inequality). Let 𝑆 ∈ R be a non-negative random variable.
Then, for any 𝛼 > 0

Pr[𝑆 ≥ 𝛼] ≤ E[𝑆]
𝛼

.

Theorem 4.2 (Union bound, Boole’s inequality). Let 𝐸1, . . . , 𝐸𝑁 be events. Then,

Pr
[︃

𝑁⋃︁

𝑘=1
𝐸𝑖

]︃
≤

𝑁∑︁

𝑘=1
Pr[𝐸𝑖].

In particular, for scalar random variables 𝑆1, . . . , 𝑆𝑁 ∈ R we have

Pr
[︂

max
1≤𝑘≤𝑁

𝑆𝑘 ≥ 𝛼

]︂
≤ 𝑁 max

1≤𝑘≤𝑁
Pr[𝑆𝑘 ≥ 𝛼].

Theorem 4.3 (Haar integration tensor). Let 𝜇(𝑢) denote the unitarily invariant Haar
measure on S(𝐻), dim(𝐻) = 𝐷. Then, for any 𝑘 ∈ N:

∫︁

S(𝐻)
(𝑢𝑢*)⊗𝑘d𝜇(𝑢) =

(︃
𝐷 + 𝑘 − 1

𝑘

)︃−1

𝑃∨𝑘 . (1)

5

Finally, we will need the concept of a covering net for the complex unit spheres S(𝐻1)
and S(𝐻2). A covering net of fineness 𝜃 > 0 is a finite set of points {𝑧𝑖}𝑁

𝑖=1 ⊂ S(𝐻𝑖)
that evenly covers the sphere: For every 𝑣 ∈ S(𝐻𝑖), there is a net element 𝑧𝑗 that is (at
least) 𝜃-close in Euclidean distance:

‖𝑣 − 𝑧𝑗‖ℓ2 ≤ 𝜃.

Theorem 4.4 (Existence of covering nets). The complex unit sphere S(𝐻) in 𝑑 = dim(𝐻)
dimensions admits a 𝜃-covering net of cardinality

𝑁 ≤
(︂

1 + 2
𝜃

)︂2𝑑

.

The proof follows from embedding the complex unit sphere into a real-valued unit
sphere of dimension 2𝑑 (isometry) and applying a volumetric counting argument: cover
the big sphere with many small balls.
4.2 Step I: Concentration
Proposition 4.5. Suppose that 𝐷 = dim(𝐻) and fix 𝑣 ∈ S(𝐻). Choose 𝑢 ∈ S(𝐻)
uniformly from the Haar measure. Then, for any 0 < 𝑐 < 2

Pr[‖𝑢𝑢* − 𝑣𝑣*‖1 ≤ 𝑐] ≤ 2e−𝐷(1−𝑐2/4)/2

This strong probabilistic concentration forms the basis of the entire argument.
Identify a single instance of the larger problem. Then, apply the Haar integration
formula to show that a random vector 𝑢 avoids this instance with exponentially large
probability.

Remark 4.6. Randomness is a misleading term when describing Haar-uniform vectors.
They avoid fixed, concrete events in a highly predictable fashion. Sometimes this is
constructive (here: we want to show that most states are entangled), sometimes this is
destructive (future lecture: Haar-random states are useless for quantum computation).

The proof is based on two steps.

Lemma 4.7 (Reformulation). Fix 𝑢, 𝑣 ∈ S(𝐻). Then,

‖𝑢𝑢* − 𝑣𝑣*‖1 = 2
√︁

1 − |⟨𝑢, 𝑣⟩|2.

In particular, ‖𝑢𝑢* − 𝑣𝑣*‖1 ≤ 𝑐 if and only if |⟨𝑣, 𝑢⟩|2 ≥ 1 − 𝑐2/4

Proof. Set 𝑋 = 𝑢𝑢* − 𝑣𝑣*. This is a hermitian, traceless matrix with rank at most
two. The trace norm collects the absolute values of the eigenvalues: ‖𝑋‖1 = |𝜆1| + |𝜆2|.
A vanishing trace demands 𝜆1 + 𝜆2 = tr(𝑋) = 0, or equivalently 𝜆1,2 = ±𝜆. Next,

2𝜆2 = 𝜆2
1 + 𝜆2

2 = tr(𝑋) = 2(1 − tr(𝑢𝑢* 𝑣𝑣*))

and we conclude 𝜆 =
√︀

1 − |⟨𝑢, 𝑣⟩|2.

6

Proposition 4.8. Fix 𝑣 ∈ S(𝐻) and choose 𝑢 ∈ S(𝐻) according to the Haar measure
d𝜇(𝑢). Then, for any 𝜏 > 0

Pr
[︁
|⟨𝑣, 𝑢⟩|2 ≥ 𝜏

]︁
≤ 2e−𝐷𝜏/2.

Proof. Define the non-negative, scalar random variable 𝑆𝑣(𝑢) = |⟨𝑣, 𝑢⟩|2. The Haar
integration formula (1) allows us to compute arbitrary moments: For any 𝑘 ∈ N

E
[︁
𝑆𝑣(𝑢)𝑘

]︁
=E
[︁
|⟨𝑣, 𝑢⟩|2𝑘

]︁
= E

[︁
tr(𝑣𝑣*𝑢𝑢*)𝑘

]︁
= E

[︁
tr
(︁
(𝑣𝑣*)⊗𝑘 (𝑢𝑢*)⊗𝑘

)︁]︁

=tr
(︃

(𝑣𝑣*)⊗𝑘
∫︁

S(𝐻)
(𝑢𝑢*)⊗𝑘d𝜇(𝑢)

)︃
=
(︃

𝐷 + 𝑘 − 1
𝑘

)︃−1

tr
(︁
(𝑣𝑣*)⊗𝑘𝑃∨𝑘

)︁

=
(︃

𝐷 + 𝑘 − 1
𝑘

)︃−1

= 𝑘!
(𝐷 + 𝑘 − 1) · · · (𝐷 + 1)𝐷 ≤ 𝑘!

𝐷𝑘
.

This moment growth indicates sub-exponential tail behavior at a scale proportional to
1/𝐷. More precisely, choose 𝜏 > 0 and observe

Pr[𝑆𝑣(𝑢) ≥ 𝜏] =Pr[𝐷𝑆𝑣(𝑢)/2 ≥ 𝐷𝜏/2] = Pr[exp(𝐷𝑆𝑣(𝑢)/2) ≥ exp(𝐷𝜏/2)].

Next, apply Markov’s inequality and expand the exponential in a Taylor series:

Pr[exp(𝐷𝑆𝑣(𝑢)/2) ≥ exp(𝐷𝜏/2)] ≤e−𝐷𝜏/2E
[︁
e𝐷𝑆𝑣(𝑢)/2

]︁

=e−𝐷𝜏/2
∞∑︁

𝑘=0

1
𝑘!

𝐷𝑘

2𝑘
E
[︁
𝑆𝑣(𝑢)𝑘

]︁

≤e−𝐷𝜏/2
∞∑︁

𝑘=0

1
2𝑘

= 2e−𝐷𝜏/2.

Combining both statements readily yields Proposition 4.5.
4.3 Step II: Discretization
Let us now take into account the bi-partite structure: dim(𝐻1) = 𝑑1, dim(𝐻2) = 𝑑2
and 𝐻 = 𝐻1 ⊗ 𝐻2 has dimension 𝐷 = 𝑑1𝑑2.

Let us now choose an arbitrary fixed product state 𝑣𝑣* = 𝑎𝑎* ⊗ 𝑏𝑏*. Concentration
– Proposition 4.5 – ensures that a Haar-random joint state 𝑢𝑢* will be very far away
from this reference state:

Pr[‖𝑢𝑢* − 𝑎𝑎* ⊗ 𝑏𝑏*‖1 ≤ 𝑐] ≤ 2e−𝐷𝑐/2,

where 𝑐 = 1 − 𝑐2/4 ∈ (0, 1). The probability of being close is exponentially supressed.
What is more, the exponent features 𝐷 = 𝑑1𝑑2 – the dimension of 𝐻1 ⊗ 𝐻2.

Intuitively, the set of all possible product space should have a much smaller dimension:
it is the tensor product of two unit spheres in 𝑑1 and 𝑑2 dimensions each. The notion

7

of covrering nets allows for quantifying this intuition. Fix 𝜃 > 0 and endow S(𝐻1) and
S2(𝐻2) with two covering nets:

{𝑦𝑖}𝑁1
𝑖=1 ⊂ S(𝐻1) and {𝑧𝑗}𝑁2

𝑗=1 ⊂ S(𝐻2).

It should not come as a surprise that all possible net product states

𝒩joint =
{︁

𝑦𝑖𝑦
*
𝑖 ⊗ 𝑧𝑗𝑧*

𝑗 : 1 ≤ 𝑖 ≤ 𝑁1, 1 ≤ 𝑗 ≤ 𝑁2
}︁

⊂ S(𝐻1)⊗̃S(𝐻2) ∩ S(𝐻1 ⊗ 𝐻2).

provide an accurate discretization of the set of all product states.

Lemma 4.9. Fix an arbitrary product state 𝑎𝑎* ⊗ 𝑏𝑏* with 𝑎 ∈ S(𝐻1) and 𝑏 ∈ S(𝐻2).
Then, there is an element 𝑦𝑖𝑦

*
𝑖 ⊗ 𝑧𝑖𝑧

*
𝑗 of the joint net 𝒩joint that obeys

‖𝑎𝑎* ⊗ 𝑏𝑏* − 𝑦𝑦* ⊗ 𝑧𝑧*‖1 ≤ 2𝜃.

Moreover,

inf
product state 𝑣𝑣*‖𝑣𝑣* − 𝑢𝑢*‖1 ≥ min

𝑣𝑣*∈𝒩𝜃

‖𝑣𝑣* − 𝑢𝑢*‖1 − 2𝜃.

The second statement achieves our second goal: discretization. The infimum over
all (infinitely many) product states is well approximated by a finite infimum over states
in the net. The cardinality of this net obeys

|𝒩𝜃| = 𝑁1𝑁2 ≤
(︂

1 + 2
𝜃

)︂𝑑1+𝑑2
.

This number scales exponentially in 𝑑1 + 𝑑2, not 𝐷 = 𝑑1𝑑2.

Proof. The covering net assumption ensures that there exist net elements 𝑦 and 𝑧 such
that

𝜃2 ≥‖𝑎 − 𝑦‖2
2 = 2(1 − Re(⟨𝑎, 𝑦⟩)) ≥ 2(1 − |⟨𝑎, 𝑦⟩|),

𝜃2 ≥‖𝑏 − 𝑧‖2
2 = 2(1 − Re(⟨𝑏, 𝑧⟩)) ≥ 2(1 − |⟨𝑎, 𝑦⟩|).

Also, for any 𝑥, 𝑦 ∈ [0, 1]
√︁

1 − 𝑥2𝑦2 ≤
√︀

1 − 𝑥2 =
√︁

(1 − 𝑥)(1 + 𝑥) ≤
√︁

2(1 − 𝑥).

Therefore,

‖𝑎𝑎* ⊗ 𝑏𝑏* − 𝑦𝑦* ⊗ 𝑧𝑧*‖1 =2
√︁

1 − |⟨𝑎 ⊗ 𝑏, 𝑦 ⊗ 𝑧⟩|2

=2
√︁

1 − |⟨𝑎, 𝑦⟩|2|⟨𝑏, 𝑧⟩|2

≤2
√︁

1 − |⟨𝑎, 𝑦⟩|2 ≤ 23/2
√︁

1 − |⟨𝑎, 𝑦⟩|
≤2𝜃.

8

4.4 Step III: Union bound
Proposition 4.10. Let 𝒩𝜃 be the net of pure states. Fix 0 < 𝑐 < 2. Then,

Pr
[︂

inf
product state 𝑣𝑣*‖𝑣𝑣* − 𝑢𝑢*‖1 ≤ 𝑐

]︂
≤ |𝒩𝜃| max

𝑣𝑣*∈𝒩𝜃

Pr[‖𝑣𝑣* − 𝑢𝑢*‖1 ≤ 𝑐 + 2𝜃].

This is the final trick. We replace a infimum over infinitely many points by a
minimization over finitely many points. Subsequently, we can apply the union bound to
pull out the minimization. The extra cost we incur is the cardinality of the product
state net:

|𝒩𝜃| ≤
(︂

1 + 2
𝜃

)︂2(𝑑1+𝑑2)

Proof. Fix 𝑢 ∈ S(𝐻). Then

inf
product state 𝑣𝑣*‖𝑣𝑣* − 𝑢𝑢*‖1 ≤ 𝑐 implies min

𝑣𝑣*∈𝒩𝜃

‖𝑣𝑣* − 𝑢𝑢*‖1 ≤ 𝑐 + 2𝜃,

according to Lemma 4.9. The converse direction must not hold, however. Viewed as
events, the right hand side therefore occurs with a larger probability. Importantly, the
minimization is over a finite set of net states. Therefore, we may apply the union bound:

Pr
[︂

inf
product state 𝑣𝑣*‖𝑣𝑣* − 𝑢𝑢*‖1 ≤ 𝑐

]︂
≤Pr

[︂
min

𝑣𝑣*∈𝒩𝜃

‖𝑣𝑣* − 𝑢𝑢*‖1 ≤ 𝑐 + 2𝜃

]︂

=Pr

⎡
⎣ ⋃︁

𝑣𝑣*∈𝒩𝜃

{‖𝑣𝑣* − 𝑢𝑢*‖1 ≤ 𝑐 + 2𝜃}
⎤
⎦

≤
∑︁

𝑣𝑣*∈𝒩𝜃

Pr[‖𝑣𝑣* − 𝑢𝑢*‖1 ≤ 𝑐 + 2𝜃]

≤|𝒩𝜃| max
𝑣𝑣*∈𝒩𝜃

Pr[‖𝑣𝑣* − 𝑢𝑢*‖1 ≤ 𝑐 + 2𝜃].

5 Proof of Theorem 3.2
Simply combine Lemma 4.10 with exponentially strong concentration for every net
element:

Pr
[︂

inf
product state 𝑣𝑣*‖𝑣𝑣* − 𝑢𝑢*‖1 ≤ 𝑐

]︂
≤ |𝒩𝜃| max

𝑣𝑣*∈𝒩𝜃

Pr[‖𝑣𝑣* − 𝑢𝑢*‖1 ≤ 𝑐 + 2𝜃]

≤ |𝒩𝜃|2e−𝐷(1−(𝑐+2𝜃)2/4)/2.

Finally, recall 𝐷 = 𝑑1𝑑2 and use the volumetric bound on the cardinality of 𝒩𝜃:

Pr
[︂

inf
product state 𝑣𝑣*‖𝑣𝑣* − 𝑢𝑢*‖1 ≤ 𝑐

]︂
≤ 2

(︂
1 + 2

𝜃

)︂2(𝑑1+𝑑2)
e−𝐷(1−(𝑐+2𝜃)2/4)/2.

We could now optimize over the fineness 𝜃 of the net.

9

The naive choice 𝜃 = 1/4 suffices for our purpose. Furthermore, specifying 𝑐 = 1
yields

Pr
[︂

inf
product state 𝑣𝑣*‖𝑣𝑣* − 𝑢𝑢*‖1 ≤ 1

]︂
≤ 292(𝑑1+𝑑2)e−7𝐷/32 ≤ 2 exp

(︂
4.5(𝑑1 + 𝑑2) − 7𝑑1𝑑2

32

)︂
,

as advertised in Theorem 3.2.

Lecture 07: Classical reversible circuits

Scribe: Thom Bohdanowicz

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
April 22, 2019

1 Agenda
1. Evolution of classical probability distributions
2. Classical reversible circuits

(a) Bit strings and tensor products
(b) logical operations and permutation matrices
(c) circuit diagrams

2 Evolution of classical probability distributions
2.1 Recapitulation of classical probability distributions
The set of all 𝑑-variate probability distributions is the simplex:

Δ𝑑−1 =
{︁

𝑥 ∈ R𝑑 : 𝑥 ≥ 0, ⟨1, 𝑥⟩ = 1
}︁

⊂ R𝑑.

It has 𝑑 extreme points, namely the standard basis vectors: 𝑒1, . . . , 𝑒𝑑. The entire
simplex can be reached by convex mixtures of these extreme points:

Δ𝑑−1 = conv{𝑒1, . . . , 𝑒𝑑} =
{︃

𝑟∑︁

𝑖=1
𝜏𝑖𝑒𝑖 : 𝜏𝑖 ≥ 0,

𝑟∑︁

𝑖=1
𝜏𝑖 = 1

}︃

Another distinguished point of Δ𝑑−1 is its the (bary-) center:

𝑏 = 1
𝑑

𝑑∑︁

𝑖=1
𝑒𝑖 = 1

𝑑
1.

This corresponds to the flat (maximally random) distribution of 𝑑 events.

2.2 Elementary transformations
We now address the question of evolution of probability distributions. More precisely, we
are looking for linear transformations that map probability distributions onto probability
distributions.

Example 2.1 (Reset). Fix 𝑞 ∈ Δ𝑑−1 and define 𝐴 = 𝑞1𝑇 ∈ ℒ(𝐻). Then, for any
𝑝 ∈ Δ𝑑−1:

𝐴𝑝 = 𝑞⟨1, 𝑝⟩ = 𝑞.

This evolution resets arbitrary distributions 𝑝 back to some fixed distribution 𝑞.

2

Although valid, resets behave in a rather peculiar fashion. They do not depend
on the input at all. In the following we shall restrict our attention to less invasive
evolutions.

Definition 2.2. A map 𝐴 ∈ ℒ(𝐻) is unital if the flat distribution is a fix-point: 𝐴1 = 1.

Unital transformations are linear and preserve the barycenter of the simplex. In
order to fully preserve the geometric structure of the simplex, a unital transformation
must also obey the following three properties:

1. Non-negativity: 𝐴𝑖𝑗 ≥ 0. Every entry of 𝐴 (with respect to the standard basis)
must be non-negative. Otherwise we could identify a test distribution 𝑝 ∈ Δ𝑑−1
that gets mapped onto a vector that has negative entries.

2. Rows must sum to one: ∑︀𝑑
𝑖=1[𝐴]𝑘,𝑖 = 1 for all 1 ≤ 𝑘 ≤ 𝑑. This is a consequence

of unitality:
⎛
⎜⎝

1
...
1

⎞
⎟⎠ = 1 = 𝐴1 =

⎛
⎜⎜⎝

∑︀𝑑
𝑖=1 𝐴1𝑖

...∑︀𝑑
𝑖=1 𝐴𝑑𝑖

⎞
⎟⎟⎠

3. Columns must sum to one: ∑︀𝑑
𝑖=1 𝐴𝑖𝑘 = 1 for all 1 ≤ 𝑘 ≤ 𝑑. This is a consequence

of the normalization constraint ⟨𝑞, 1⟩ = 1 for all 𝑞 ∈ Δ𝑑−1. Suppose 𝑞 = 𝐴𝑝
for some 𝑝 ∈ Δ𝑑−1. Then, 1 = ⟨1, 𝑞⟩ = ⟨1, 𝐴𝑝⟩ = ⟨𝐴𝑇 1, 𝑝. Validity of this
normalization for any 𝑝 ∈ Δ𝑑1 enforces 𝐴𝑇 1 = 1. Point 2 implies that this is
equivalent to demanding that the rows of 𝐴𝑇 (i.e. the columns of 𝐴) must sum
to one.

Operators 𝐴 ∈ ℒ(𝐻) with these three properties correspond to doubly stochastic
matrices.

Fact 2.3. Every unital map 𝐴 that obeys 𝐴Δ𝑑−1 ⊆ Δ𝑑−1 is described by a doubly
stochastic matrix.

It is easy to check that the set of all doubly-stochastic matrices is convex. This
convex set is called the Birkhoff polytope.

A permutation matrix is an orthogonal matrix Π ∈ ℒ(𝐻) such that every row and
every column contain exactly one entry of one. All other entries are zero.

Example 2.4 (Permutation matrices for 𝑑 = 3).
⎛
⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎠,

⎛
⎜⎝

0 1 0
1 0 0
0 0 1

⎞
⎟⎠,

⎛
⎜⎝

0 0 1
0 1 0
1 0 0

⎞
⎟⎠,

⎛
⎜⎝

1 0 0
0 0 1
0 1 0

⎞
⎟⎠,

⎛
⎜⎝

0 1 0
0 0 1
1 0 0

⎞
⎟⎠,

⎛
⎜⎝

0 0 1
1 0 0
0 1 0

⎞
⎟⎠.

Permutation matrices are in one-to-one correspondence with permutations of the
standard basis vectors. For instance, the second matrix in the example permutes the

3

first two standard basis vectors, while leaving the third one invariant:
⎛
⎜⎝

0 1 0
1 0 0
0 0 1

⎞
⎟⎠𝑒1 = 𝑒2,

⎛
⎜⎝

0 1 0
1 0 0
0 0 1

⎞
⎟⎠𝑒2 = 𝑒1,

⎛
⎜⎝

0 1 0
1 0 0
0 0 1

⎞
⎟⎠𝑒3 = 𝑒3.

It is easy to check that every permutation matrix is doubly stochastic. What is more,
permutation matrices seem to correspond to “extreme” versions of doubly stochastic
matrices. Most of the entries are zero and therefore exactly saturate the non-negativity
constraint [𝐴𝑖𝑗] ≥ 0. The Birkhoff-von Neumann theorem makes this intuition precise.

Theorem 2.5 (Birkhoff von-Neumann). The set of doubly stochastic matrices is a convex
polytope. Its extreme points correspond to permutation matrices.

In other words: every doubly stochastic matrix is a convex mixture of permuta-
tion matrices. This has profound implications for the study of (unital) evolutions of
probability distributions.

Corollary 2.6 (Full characterization of unitary maps that preserve the simplex). Every
unital map 𝐴 that obeys 𝐴Δ𝑑−1 ⊆ Δ𝑑−1 is a convex mixture of permutation matrices.

Permutation matrices are extreme unital transformations. They simply permute the
set of extreme points of Δ𝑑1 :

Π : 𝑒1, . . . , 𝑒𝑑 ↦→ 𝑒𝜋(1), . . . , 𝑒𝜋(𝑑).

In turn, they leave the simplex invariant:

ΠΔ𝑑−1 = conv{Π𝑒1, . . . , 𝑒𝑑} = conv
{︁

𝑒𝜋(1), . . . , 𝑒𝜋(𝑑)
}︁

= Δ𝑑−1.

More general untital evolutions (convex mixtures) shrink the simplex. This geometric
observation may be viewed as a starting point for the beautiful theory of majorization.

Remark 2.7. For the sake of simplicity, we have restricted our attention to untial maps
from Δ𝑑−1 to itself. This restriction is not necessary. Similar arguments allow for char-
acterizing unital evolutions that change the dimension (number of potential outcomes):
𝐴 : Δ𝑑−1 → Δ𝑑′−1 with 𝑑′ ̸= 𝑑.

3 Classical reversible circuits
3.1 Bit-strings and the extended standard basis
There is a deep connection between unital evolutions of probability distributions and
classical, reversible computation. To make this correspondence as explicit as possible,
we introduce the following notation. Fix 𝑑 = 2 (bi-variate distributions) and identify
the standard basis with either the zero-bit, or the one-bit:

0 ∼ 𝑒0 =
(︃

1
0

)︃
, 1 ∼ 𝑒1 =

(︃
0
1

)︃
.

4

This establishes a connection between {0, 1} = Z2 (bit-land) and {𝑒0, 𝑒1} ⊂ Δ1 ⊂ R2

(deterministic probability distributions).
We can use tensor products to extend this identification to bit strings of length 𝑛:

(𝑥1 · · · 𝑥𝑛) ∈ {0, 1}𝑛 ∼ 𝑒𝑥1 ⊗ · · · ⊗ 𝑒𝑥𝑛 ∈
(︁
R2
)︁⊗𝑛

.

We identify length-𝑛 bit strings with the labels of the extended standard basis of
(︀
R2)︀⊗𝑛.

These extended standard basis vectors form the extreme points of a simplex in 2𝑛

dimensions:

Δ2𝑛−1 =conv{𝑒𝑥1 ⊗ · · · ⊗ 𝑒𝑥𝑛
: (𝑥1 · · · 𝑥𝑛) ∈ {0, 1}𝑛} (1)

≃
{︂

𝑥 ∈
(︁
R2
)︁⊗𝑛

: ⟨𝑥, 1⟩ = 1, 𝑥 ≥ 0
}︂

.

Here, the sign “≃” denotes equivalence up to isomorphisms. The above relation holds
true with equality if we identify the standard basis of R2𝑛 with the extended standard
basis of

(︀
R2)︀⊗𝑛.

3.2 Permutation matrices in (R2)⊗𝑛 and logical operations on bit strings

It is highly instructive to consider the symmetry group of the simplex Δ2𝑛−1 ⊂ (︀
R2)︀⊗𝑛

defined in (1).
3.2.1 The permutation matrix associated with negation (𝑛 = 1)

For 𝑛 = 1, there are only two permutations. The identity Π = I ∈ ℒ(︀R2)︀ and
transposition. The former leaves standard basis vectors – and their associated bits –
invariant, while transposition permutes them:

𝑇 (0) ∼𝑇 𝑒0 =
(︃

0 1
1 0

)︃
𝑒0 = 𝑒1 ∼ 1,

𝑇 (1) ∼𝑇 𝑒1 =
(︃

0 1
1 0

)︃
𝑒1 = 𝑒0 ∼ 1.

On the level of bits, we can associate this transformation with the following truth table:

𝑥 ∈ {0, 1} 𝑇 (𝑥)
0 1
1 0

.

Hence, the logical operation associated with transposition 𝑇 ∈ ℒ(︀R2)︀ is negation:

𝑇 (𝑥) = ¬𝑥 for 𝑥 ∈ {0, 1}.

3.2.2 The permutation matrix associated with XOR (𝑛 = 2)

For 𝑛 = 2,
(︀
R2)︀⊗2 ≃ R4 is accompanied by in total 4! = 24 permutation matrices.

Some of them arise from tensor products of permutation matrices acting on R2 only.

5

Concrete examples are the identity (do nothing) and all possible combinations of single
bit negations:

𝐼(𝑥1𝑥2) ∼I ⊗ I𝑒𝑥1 ⊗ 𝑒𝑥2 = 𝑒𝑥1 ⊗ 𝑒𝑥2 = 𝑥1𝑥2,

𝑇1(𝑥1𝑥2) ∼𝑇 ⊗ I𝑒𝑥1 ⊗ 𝑒𝑥2 = 𝑒¬𝑥1 ⊗ 𝑒𝑥2 ∼ ¬𝑥1𝑥2,

𝑇2(𝑥1𝑥2) ∼I ⊗ 𝑇 𝑒𝑥1 ⊗ 𝑒𝑥2 = 𝑒𝑥1 ⊗ 𝑒¬𝑥2 ∼ 𝑥1¬𝑥2,

𝑇1,2(𝑥1𝑥2) ∼𝑇 ⊗ 𝑇 𝑒𝑥1 ⊗ 𝑒𝑥2 = 𝑒¬𝑥1 ⊗ 𝑒¬𝑥2 ∼ ¬𝑥1¬𝑥2

for all 𝑥1, 𝑥2 ∈ {0, 1}. Other permutations are genuine elements of R4 and cannot be
decomposed into tensor products of smaller permutation matrices. A concrete example
is the following permutation matrix

𝑋 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎠ ∈ ℒ

(︁
R4
)︁
.

that we have represented with respect to the extended standard basis 𝑒00 = 𝑒0⊗𝑒0, 𝑒01 =
𝑒0 ⊗ 𝑒1, 𝑒10 = 𝑒1 ⊗ 𝑒0, 𝑒11 = 𝑒1 ⊗ 𝑒1 of R4 ≃ (︀

R2)︀⊗2. It corresponds to the following
logical transformation on length-two bit strings:

𝑋(00) ∼𝑋𝑒0 ⊗ 𝑒0 = 𝑒0 ⊗ 𝑒0 ∼ 00,

𝑋(01) ∼𝑋𝑒0 ⊗ 𝑒1 = 𝑒0 ⊗ 𝑒1 ∼ 01,

𝑋(10) ∼𝑋𝑒1 ⊗ 𝑒0 = 𝑒1 ⊗ 𝑒1 ∼ 11,

𝑋(11) ∼𝑋𝑒1 ⊗ 𝑒1 = 𝑒1 ⊗ 𝑒0 ∼ 10.

On the level of bits, we can associate this transformation with the following truth table:

𝑥 ∈ {0, 1} 𝑥2 ∈ {0, 1} [𝑋(𝑥1𝑥2)]1 [𝑋(𝑥1𝑥2)]2
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

.

Conditioned on the first bit being one (𝑥1 = 1), this operation inverts the second bit.
Otherwise it does nothing. This action corresponds to the reversible XOR (exclusive
ore):

XOR(𝑥1𝑥2) =
{︃

𝑥1𝑥2 if 𝑥1 = 0,

𝑥1¬𝑥2 if 𝑥1 = 1
.

3.2.3 Correspondence for general 𝑛: Reversible logical functions

The approach outlined generalizes to tensor products of order 𝑛, or equivalently: bit
strings of length 𝑛. Permutation matrices Π ∈ (︀R2)︀⊗𝑛 may be interpreted as logical
operations on length-𝑛 bit strings. We emphasize two key features of permutation
matrices:

6

1. Orthogonality: Π−1 = Π𝑇 for any permutation matrix
2. Group structure: Permutation matrices form a finite group.

Both features have profound implications for the associated logical functions. The first
statement highlights that reading a permutation backwards, corresponds to taking the
inverse. In particular: Π𝑇 Π = I implies 𝜋𝑇 (𝜋(𝑥1 · · · 𝑥𝑛)) = 𝑥1 · · · 𝑥𝑛. Here, 𝜋𝑇 = 𝜋−1

denotes the “reverse” of a logical function.

Fact 3.1. Permutation matrices Π acting on
(︀
R2)︀⊗𝑛 can represent any reversible logical

function.

The group structure also has profound implications. Finite groups 𝐺 typically have
a small set of generators 𝐺1, . . . , 𝐺𝑚 ⊂ 𝐺. These can be combined to generate any
element of the group. In particular, a small number of permutation matrices suffices to
“build” arbitrary permutation matrices. Fact 3.1 allows for extending this structure to
reversible logical functions.

Fact 3.2. Any reversible logical function 𝜋 : {0, 1}𝑛 → {0, 1}𝑛 can be decomposed into
a product of smaller (more elementary) logical functions. This procedure is called a
circuit decomposition.

The logical functions associated with generators of permutation matrices are called
an elementary (reversible) gate set. Perhaps surprisingly, a single logical function on 3
bits suffices to decompose any reversible 𝑛-bit function1. This magic function is the
Toffoli gate. It’s permutation matrix corresponds to

𝑇𝑂𝐹 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3.3 Circuit diagrams for reversible computation
Suppose that we have found a decomposition of a general permutation matrix Π ∈
ℒ(︀(R2)⊗𝑛

)︀
into a product of simpler permutation matrices that act only on a sub-set of

the tensor factors. We can then use the wiring formalism to visualize this decomposition.
For instance, suppose that Π acts on four tensor factors (bits) and may be decomposed
as

Π = (𝑇𝑂𝐹 ⊗ I)(𝑋𝑂𝑅 ⊗ 𝑋𝑂𝑅)I ⊗ 𝑇 ⊗3 :
(︁
R2
)︁⊗4

→
(︁
R2
)︁⊗4

.

1In order to achieve this decomposition, we may have to embed the logical function 𝜋 : {0, 1}𝑛 →
{0, 1}𝑛 into a larger bit space {0, 1}𝑛+𝑎 and use the additional 𝑎 bits as “ancillas”.

7

The graphical visualization of this decomposition is

Π = 𝑇𝑂𝐹 𝑋
𝑂

𝑅
𝑋

𝑂
𝑅

𝑇

𝑇

𝑇 = .

On the right hand side, we have replaced the individual boxes with standard expressions
from the field of logical circuits. The diagram on the right is called a circuit diagram.
The identification of bit strings with extended standard basis vectors in (R2)⊗𝑛 naturally
produces this important framework from electrical engineering. However, there is a
slight twist. We read wiring diagrams from right to left, while circuit diagrams are
typically read from left to right.

This example can be generalized to arbitrary logical functions that are associated
with big permutation matrices Π. The fact that permutation matrices form a group
asserts that any such logical function can be decomposed into a sequence of more
elementary logical functions. Wiring diagrams, or circuit diagrams, visualize such a
decomposition in a graphical fashion.

Fact 3.3. Wiring diagrams may be viewed as a natural extension of classical circuit
diagrams.

Reversible logical functions (big permutation matrix) form the basic building block
of reversible computation.

Definition 3.4. A classical reversible computation is a three-step procedure:

1. input: 𝑥1 · · · 𝑥𝑛 ↦→ 𝑒𝑥1 ⊗ · · · ⊗ 𝑒𝑥𝑏

2. computation: run the reversible circuit on 𝑥1 · · · 𝑥𝑛.
3. read-out: Perform the measurement 𝑝(𝑦1 · · · 𝑦𝑑) = ⟨𝑒𝑦1 ⊗ · · · ⊗ 𝑒𝑦𝑛Π𝑒𝑥1 ⊗ · · · 𝑒𝑥𝑑

⟩.
This measurement yields a deterministic read-out.

It is worthwhile to point out the following feature of this formalism. Reading
the diagram/circuit backwards necessarily produces Π𝑇 . This is the inverse of Π.
A hardware implementation of such a circuit therefore has the following appealing
feature. We can re-set a concrete computation by running the circuit backwards! This
automatically re-sets the bits to the original input:

𝑥1 · · · 𝑥𝑛
circuit: right to left−→ 𝑦1 · · · 𝑦𝑛

circuit: left to right−→ 𝑥1 · · · 𝑥𝑛.

Standard, i.e. non-reversible, circuits do not have this feature. They must be re-set
by force after a computation is completed. A fundamental thermodynamic restriction,
called Landauer’s principle, states that such re-sets necessarily cost work/energy, because
they erase information. Reversible computation is in principle capable of bypassing

8

this fundamental threshold. For this reason, the study of reversible computations has
recently gained some traction again. The ultimate goal is to derive hardware that
requires considerable less energy.

We conclude this section with an important remark regarding generalization. The
tensor product representation of reversible circuits is remarkably powerful. We can easily
extend it to reason about randomized inputs and randomized computations. Simply
replace the deterministic input 𝑒𝑥1 ⊗· · ·⊗𝑒𝑥𝑛 by a more general probability distribution
𝑝 ∈ Δ2𝑛−1, and replace permutation matrices Π by doubly stochastic matrices.

Lecture 08: Quantum circuits and quantum computing
Scribe: Alex Dalzell

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
April 24, 2019

1 Agenda
1. Evolution of quantum states
2. Quantum circuits and quantum computation
3. Where is the quantum magic?

Unitaries vs. Permutation?
Hadamard + superposition?
Entanglement?

In the last lecture, we focused on the evolution of classical probability distributions.
These are described by doubly stochastic matrices and correspond to the convex hull of all
permutation matrices. Subsequently, we restricted our attention to permutation matrices
(extreme evolutions) and standard basis vectors (extreme probability distributions) on
the tensor product space (R2)⊗𝑛. In doing so, we developed the theory of reversible
classical computation: bit strings are associated with extended standard basis vectors
and reversible logical functions permute them. Here, we apply the same reasoning to
(probability) density matrices. This will give rise to quantum computing – the natural
(SDP) extension of reversible computing that has received a tremendous amount of
attention over the past decades.

2 Evolution of quantum states
2.1 Recapitulation of quantum states

Set 𝐻 = C𝑑. The set of all quantum states is

S(𝐻) = {𝑋 ∈ ℒ(𝐻) : 𝑋* = 𝑋, 𝑋 ⪰ 0, (I, 𝑋)}.

This is a convex set. The extreme points are given by pure quantum states 𝑣𝑣*, where
𝑣 ∈ C𝑑 has unit norm:

S(𝐻) = conv
{︁

𝑣𝑣* : 𝑣 ∈ C𝑑, ⟨𝑣, 𝑣⟩ = 1
}︁

.

This formula highlights that any density matrix 𝜌 corresponds to a convex mixture of
pure states. Another distinguished point is the bary-center:

𝐵 =
∫︁

S𝑑−1
d𝜇(𝑣)𝑣𝑣* =

∫︁
d𝜇(𝑈)𝑈𝑣0𝑣*

0𝑈* = 1
𝑑

I.

This is called the maximally mixed state and is the quantum analogue of the completely
flat distribution.

2

2.2 Elementary evolution of density matrices
We now address the question of evolution. We are looking for linear transformations
that map the set of quantum states onto itself:

𝒜 : ℒ(𝐻) → ℒ(𝐻) s.t. 𝒜(S(𝐻)) ⊆ S(𝐻).

These operators act on operators, i.e. 𝒜 ∈ ℒ(ℒ(𝐻)) and we will call them channels.

Example 2.1 (Reset). Fix 𝜎 ∈ S(𝐻) and define 𝒜(𝑋) = 𝜎tr(𝑋) for 𝑋 ∈ ℒ(𝐻). This is
a valid quantum channel: 𝒜(𝜌) = 𝜎 ∈ S(𝐻) for all density matrices 𝜌 ∈ S(𝐻).

Although valid channels, resets behave in a peculiar fashion and do only respect the
geometry of quantum states in an extreme sense. All of S(𝐻) is mapped onto a single
point. In the following, we shall restrict our attention to less invasive evolutions that
preserve the barycenter of state space.

Definition 2.2. A channel 𝒜 : ℒ(𝐻) → ℒ(𝐻) is called unital, if 𝒜(I) = I.

Let us now focus on the natural quantum extension of permutation matrices.

Proposition 2.3. Fix a unitary matrix 𝑈 ∈ 𝑈(𝑑). Then, the channel 𝒰(𝑋) = 𝑈𝑋𝑈*

maps pure states onto pure states. These maps are also unital: 𝒰(I) = 𝑈I𝑈* = I.

Unitary channels appropriately mimic the features of permutation matrices acting
on Δ𝑑−1. They fix the barycenter and map quantum state space onto itself:

𝒰(S(𝐻)) = {𝑈𝑋𝑈* : 𝑋* = 𝑋, 𝑋 ⪰ 0, (𝐼, 𝑋) = 1}.

More general unital channels necessarily shrink S(𝐻). Typically one defines the set of
unital quantum channels via the following three conditions:

1. complete positivity: a channel must map every psd matrix onto a psd matrix (in
a strong sense): 𝒜 ⊗ ℐ(𝜌) ⪰ 0 for all 𝜌 ∈ ℒ(𝐻) ⊗ ℒ(𝐻).

2. unitality: 𝒜(I) = I.
3. trace preservation: (I, 𝒜(𝑋)) = (I, 𝑋).

These three requirements single out a convex set of channels. Unitary channels cor-
respond to extreme points of this set. However, this set of extreme points is not
complete!

Fact 2.4 (Quantum von-Neumann theorem is false). Convex mixtures of unitary channels
𝒜 = ∑︀𝑟

𝑖=1 𝜏𝑖𝒰𝑖 do not generate the set of all unital quantum channels. There are exotic
exceptions.

This apparent lack of structure renders the study of quantum channels more com-
plicated than their classical counter-part (the set of doubly stochastic matrices is a
polytope and permutation matrices are its extreme points). Nonetheless, it is useful
to consider unitary channels as the most extreme quantum evolutions. They do share

3

several desirable properties with permutation matrices. In particular, subsequent appli-
cations of unitary channels correspond to products of unitaries. Let 𝒱1(𝑋) = 𝑉1𝑋𝑉 *

1
and 𝒱2(𝑋) = 𝑉2𝑋𝑉 *

2 be two unitary channels. Then,

𝒱2 ∘ 𝒱1(𝜌) = 𝒱2(𝒱1(𝜌)) = 𝒱2(𝑉1𝜌𝑉 *
1) = 𝑉2𝑉1𝜌(𝑉1𝑉2)* = 𝒰(𝜌)

is again a unitary channel described by 𝑈 = 𝑉1𝑉2. What is more, unitary matrices
form a group 𝒰(𝑑). This allows us to decompose general unitary channels as a product
of simpler unitary channels.

3 Quantum circuits and computations
We can now basically repeat our analysis of reversible circuits from last lecture. For
concreteness, we will be working explicitly with circuits acting on a colection of qubits
(𝑑 = 2): thus denote

𝐻 = C2, S(𝐻) = conv{𝑣𝑣* : 𝑣 ∈ 𝐻, ⟨𝑣, 𝑣⟩ = 1}
The qubits are the hardware part of a quantum circuit. If we have 𝑛 qubits, then the
quantum circuit acts on an initial quantum state 𝜌joint ∈ S(𝐻⊗𝑛) ⊆ ℒ(𝐻⊗𝑛). The state
𝜌joint plays the role that the initial tensor 𝑒𝑥1 ⊗ . . . ⊗ 𝑒𝑥𝑛 ∈ (R2)𝑛 played for classical
computation. Then a quantum circuit is simply a big unitary operator 𝑈 ∈ ℒ(𝐻⊗𝑛),
which induces the unitary channel

𝒰(𝜌in) = 𝑈𝜌in𝑈*. (1)

In wiring notation, this unitary channel acts in the following fashion:

··
·

··
·

··
·

··
· 𝜌in𝑈 𝑈*

Fact 3.1. The set of unitary matrices on 𝐻⊗𝑛 forms a group.
Moreover, the set of unitaries is approximately generated by a fixed finite set of

small unitaries.
Theorem 3.2 (Solovay, Kitaev). A small number of small (i.e acting on two or three
neighboring tensor factors) suffices to approximate any unitary 𝑈 ∈ ℒ(𝐻⊗𝑛)1.

··
·

··
·

𝑈 ≈ ··
·

··
·

𝑈1 𝑈2 𝑈2· · ·

· · · 𝑈1𝑈2
𝑈2

1Specifically, they showed that any 𝑈 can be approximated to accuracy 𝜀 using a sequence composed
of smaller unitaries of length only polynomial in log(1/𝜀).

4

A set of gates that is capable of approximately generating any unitary in ℒ(𝐻⊗𝑛)
is called a universal gate set. In the decomposition of 𝑈 into a sequence of unitaries
drawn from such a generating set, the length of the sequence is called the circuit length.

Remark 3.3. Parallelization can substantially reduce the length of the circuit. The
parallelized circuit length is called the circuit depth.

For example, there are six unitaries shown in the decomposition above, so they
would contribute six toward the circuit length but only three toward the circuit depth
since they can be implemented in three parallel layers.

Decomposition of unitary matrices readily implies decomposition of unitary channels
(quantum circuits). Following Eq. (1), if 𝑈 = 𝑈1 . . . 𝑈𝐿, then

𝒰(𝜌in) = 𝑈1 . . . 𝑈𝐿𝜌in𝑈*
𝐿 . . . 𝑈*

1 = 𝒰1(𝒰2(. . . 𝒰𝐿(𝜌in) . . .)) = 𝒰1 ∘ . . . ∘ 𝒰𝐿(𝜌in) (2)

Now we can formally define a quantum computation.

Definition 3.4 (Quantum computation). A quantum computation consists of the following
ingredients.

1. Input: Given a classical bit string 𝑥1, . . . , 𝑥𝑛, initialize 𝜌in to be in a tensor
product state: 𝑥1, . . . , 𝑥𝑛 ↦→ 𝜌in = 𝑒𝑥1𝑒*

𝑥1 ⊗ . . . ⊗ 𝑒𝑥𝑛𝑒*
𝑥𝑛

:

··
·

··
· 𝜌in = ··
·

··
·

𝑥1 𝑥1

𝑥𝑛 𝑥𝑛

2. Computation: Apply a unitary channel 𝜌out = 𝒰(𝜌in = 𝑈𝜌in𝑈*

3. Output: Perform a fixed quantum measurement to retrieve a classical string
𝑦1, . . . , 𝑦𝑛 from 𝜌out.

𝐻𝑦1,...,𝑦𝑛 = 𝑒𝑦1𝑒*
𝑦1 ⊗ . . . ⊗ 𝑒𝑦𝑛𝑒*

𝑦1 ⪰ 0 and
1∑︁

𝑦1...𝑦𝑛=0
𝐻𝑦1,...,𝑦𝑛 = I. (3)

A quantum computation can then be represented by the following diagram, which
computes the probability of measuring output 𝑦1, . . . , 𝑦𝑛 after starting with input
𝑥1, . . . , 𝑥𝑛.

··
·

··
·

𝑈 ··
·

··
·

𝑈*

𝑦1 𝑥1

𝑦𝑛 𝑥𝑛

𝑦1𝑥1

𝑦𝑛𝑥𝑛

(4)

This diagram splits into two separate diagrams that are complex conjugates of one
another. Recall that a classical reversible circuit diagram looked very similar to a single
copy of one of these constituent diagrams.

5

The complexity of the quantum computation is the circuit depth of 𝑈 . A quantum
computation is said to be polynomial-size if its circuit depth is less than a polynomial
in the number of qubits 𝑛. The ultimate goal of research in quantum algorithms is to
find problems that can be solved by polynomial-sized quantum computations but not
polynomial-sized classical computations. For example, Shor’s algorithm describes a
polynomial-sized quantum computation for factoring integers, a problem for which there
is no known classical polynomial-sized computation. Another example of a problem
where quantum computations may provide a drastic advantage is in the simulation of
quantum systems. But there are other examples where quantum computation may offer a
significant, but less drastic speedup, or where it is suspected quantum computation may
be useful but no rigorous proof has been provided. Such examples include searching for
items within a large unstructured search space, solving linear equations, combinatorial
optimization problems, and even certain machine learning tasks.

This begs the question: what is it about quantum computations that leads to their
advantage over classical computations? This is the subject of the next section.

4 What is special about quantum computing?
4.1 Unitaries vs. Permutations

A clear difference between quantum computations and classical computations is that
quantum computations apply unitary mtarices on an initial tensor product of basis
vectors, while classical circuits perform permutation matrices on the basis vectors.

It was discussed in the previous lecture how the “Controlled-controlled-NOT” or
“Toffoli” gate is universal for reversible classical computation, since it can generate any
permutation matrix. The Toffoli gate is both a permutation matrix and a unitary matrix,
so it qualifies as a quantum gate, but it does not alone form a universal set for quantum
computation. However, combining the Toffoli gate with the unitary “Hadamard” gate

𝐻 = 1√
2

(︃
1 1
1 −1

)︃

is sufficient to form a universal gate set2. Thus we can see that quantum computation is at
least as powerful as classical computation, since a designer of quantum computations may
always simply forget about the Hadamard gate and perform any classical computation
within the framework of a quantum computation using only Toffolis. This illustrates
the necessity of the Hadamard gate if one wishes to find any sort of quantum speedup.

Another important distinction between permutation and unitary matrices is that
unitary matrices form a continuous group. For example, rotation matrices

𝑅𝜃 =
(︃

cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

)︃

2Technically, Toffoli and Hadamard generate the group of real-valued unitaries. This, however, turns
out to be sufficient for quantum computation.

6

are unitary for any rotation angle 𝜃 ∈ [0, 2𝜋). Thus the degrees of freedom in a quantum
computation may vary continuously while the circuit is running. The power provided
by this fact alone is illustrated through the following example.3

Example 4.1. Suppose 𝑛 people are standing in a line and each is given a number 𝑥𝑖,
such that 𝑋 = ∑︀𝑛

𝑖=1 𝑥𝑖 is an integer. They wish to collectively compute whether 𝑋 is
even or odd, but they are only allowed to communicate one bit of information to the
person behind them in line.

Classically, if each 𝑥𝑖 is an integer, then this is possible: the first person computes
𝑥1 mod 2 and sends the result to the second person, who adds their number and sends
𝑥1 + 𝑥2 mod 2 to the third person, etc. until the final person is able to compute 𝑋
mod 2. However, if the 𝑥𝑖 are not integers but only rational numbers, then this strategy
does not work and there is no way to successfully compute the parity of 𝑋 given only
the ability to communicate one classical bit.

What if the people may communicate a single qubit instead of a single classical
bit? In this case, the problem can be solved in both the case that 𝑥𝑖 are integers and
in the case they are rationals. Here the first person begins with the single-qubit state
𝑒0𝑒*

0 and applies the unitary operation 𝑅𝜋𝑥1/2 yielding 𝑅𝜋𝑥1/2𝑒0𝑒*
0𝑅*

𝜋𝑥1/2. Person 𝑖
receives the qubit from person 𝑖 − 1 and applies 𝑅𝜋𝑥𝑖/2. The final state of the qubit
before measurement is 𝑅𝜋𝑋/2𝑒0𝑒*

0𝑅*
𝜋𝑋/2, which is 𝑒0𝑒*

0 if 𝑋 is even and 𝑒1𝑒*
1 if 𝑋 is

odd. Thus the cases can be deterministically distinguished by the measurement with
𝐻0 = 𝑒0𝑒*

0, 𝐻1 = 𝑒1𝑒*
1. This works even in the rational case precisely because the

unitary group is continuous and rotations can be performed by arbitrary angles.

Again through this example we see the importance of the Hadamard gate since
Toffoli gates alone could not be used to approximate rotation gates by arbitrary angles.
These arbitary angle rotations put the quantum data into a superposition of multiple
basis states, which is not possible for classical computation. Indeed, as we will see in
the following section, the Hadamard gate and superposition are intimately related.
4.2 Hadamard and superposition
The Hadamard gate is an extremely useful operation all by itself. It creates superposi-
tions when acting on standard basis elements:

𝐻𝑒0 = 1√
2

(︃
1 1
1 −1

)︃(︃
1
0

)︃
= 1√

2

(︃
1
1

)︃
= (𝑒0 + 𝑒1)/

√
2

𝐻𝑒1 = 1√
2

(︃
1 1
1 −1

)︃(︃
0
1

)︃
= 1√

2

(︃
1

−1

)︃
= (𝑒0 − 𝑒1)/

√
2

and thus

𝐻⊗𝑛𝑒⊗𝑛
0 = 1

2𝑛/2 (𝑒0 + 𝑒1)⊗𝑛 = 1
2𝑛/2

1∑︁

𝑥1,...,𝑥𝑛=0
𝑒𝑥1 ⊗ . . . ⊗ 𝑒𝑥𝑛 .

3This example was communicated to me by Renato Renner.

7

This equation shows that performing a Hadamard on each of 𝑛 qubits in the 𝑒0 basis
vector state yields the uniform superposition over all 2𝑛 extended basis states on 𝐻⊗𝑛.
This superposition property can be exploited to yield large speedups over classical
computation. A good example of this is the Deutsch-Josza algorithm.

Example 4.2 (Deutsch-Josza algorithm). The task solved by the Deutsch-Josza algorithm
is as follows. Let 𝑓 : {0, 1}𝑛 → {0, 1} be a Boolean function satisfying the promise that
either 𝑓 is constant (i.e. 𝑓(𝑧) = 0 ∀𝑧 or 𝑓(𝑧) = 1 ∀𝑧) or 𝑓 is balanced (i.e. |{𝑧 : 𝑓(𝑧) =
0}| = |{𝑧 : 𝑓(𝑧) = 1}|). We only have black-box access to 𝑓 . This means we may query
𝑓(𝑧) for a certain input 𝑧, but we can learn nothing else about 𝑓 . We would like to
determine whether 𝑓 is constant or balanced using as few queries as possible.

Classically, the optimal strategy is simply to begin querying 𝑓 for different values of
𝑧. The minimum number of queries we would need is 2: if the value of 𝑓 disagrees on
the first two queries we know that 𝑓 cannot be constant and thus must be balanced.
However, the maximum number of queries we will need in the worst case is 2𝑛−1 + 1,
since if all of the first 2𝑛−1 queries agree, it is still possible for the function to be
balanced or for it to be constant.

Quantumly, just one query is enough to solve the problem. The quantum computa-
tion that illustrates this consists only of Hadamards and queries to 𝑓 . We will assume
that 𝑓 can be queried by applying a unitary 𝑈𝑓 that acts on basis states as

𝑈𝑓 𝑒𝑥1 ⊗ . . . ⊗ 𝑒𝑥𝑛 ⊗ 𝑒𝑧 = 𝑒𝑥1 ⊗ . . . ⊗ 𝑒𝑥𝑛 ⊗ 𝑒𝑧⊕𝑓(𝑥1,...,𝑥𝑛) (5)

and is linearly extended to the rest of 𝐻⊗𝑛, where ⊕ represents addition modulo 2.
Note that a similar construction would be required to construct a classical reversible
computation involving queries to 𝑓 ; indeed, 𝑈𝑓 is both a unitary and a permutation
matrix. In wiring notation:

··
·

𝑈𝑓

𝑥1

𝑥𝑛

𝑧

= ··
·

𝑥1

𝑥𝑛

𝑧 ⊕ 𝑓(𝑥)

for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ {0, 1}. (6)

Using this quantum circuit implementation of 𝑈𝑓 , the Deutsch-Josza problem is
solved by the following quantum computation:

··
·

··
·

𝑈𝑓

𝑦1

𝑦𝑛 0

0

1

𝐻

𝐻 𝐻

𝐻

𝐻

··
·

··
·

𝑈𝑓

0

0 𝑦𝑛

𝑦1

1

𝐻

𝐻 𝐻

𝐻

𝐻

(7)

8

To see that it works, we can track the data at different points in the computation.
Define

𝑢1 := 𝐻⊗(𝑛+1)
(︁
𝑒⊗𝑛

0 ⊗ 𝑒1
)︁

= 2−(𝑛+1)/2
1∑︁

𝑥1,...,𝑥𝑛=0
𝑒𝑥1 ⊗ . . . ⊗ 𝑒𝑥𝑛 ⊗ (𝑒0 − 𝑒1)

𝑢2 := 𝑈𝑓 𝑢1 = 2−(𝑛+1)/2
1∑︁

𝑥1,...,𝑥𝑛=0
𝑒𝑥1 ⊗ . . . ⊗ 𝑒𝑥𝑛 ⊗ (𝑒𝑓(𝑥) − 𝑒1⊕𝑓(𝑥))

= 2−(𝑛+1)/2
1∑︁

𝑥1,...,𝑥𝑛=0
(−1)𝑓(𝑥1,...,𝑥𝑛)𝑒𝑥1 ⊗ . . . ⊗ 𝑒𝑥𝑛 ⊗ (𝑒0 − 𝑒1) (8)

where the last line follows from the fact that the last qubit is 𝑒0 − 𝑒1 if 𝑓(𝑥) = 0, and
simply the negation 𝑒1 − 𝑒0 if 𝑓(𝑥) = 1. When we take tr𝑛+1(𝑢2𝑢*

2) we still have a rank
one matrix and can write it as 𝑢3𝑢*

3 with

𝑢3 := 2−𝑛/2
1∑︁

𝑥1,...,𝑥𝑛=0
(−1)𝑓(𝑥1,...,𝑥𝑛)𝑒𝑥1 ⊗ . . . ⊗ 𝑒𝑥𝑛 (9)

The final step requires applying 𝑛 Hadamard gates again which act as (note below the
implied sum over repeated index 𝑖)

𝑢4 := 𝐻⊗𝑛𝑢3 = 2−𝑛
1∑︁

𝑥1,...,𝑥𝑛=0
(−1)𝑓(𝑥1,...,𝑥𝑛)

1∑︁

𝑤1,...,𝑤𝑛=0
(−1)𝑤𝑖𝑥𝑖𝑒𝑤1 ⊗ . . . ⊗ 𝑒𝑤𝑛

= 2−𝑛
1∑︁

𝑤1,...,𝑤𝑛=0

⎛
⎝

1∑︁

𝑥1,...,𝑥𝑛=0
(−1)𝑓(𝑥1,...,𝑥𝑛)(−1)𝑤𝑖𝑥𝑖

⎞
⎠𝑒𝑤1 ⊗ . . . ⊗ 𝑒𝑤𝑛 (10)

Then, we may express the probability of the measurement outcome 𝑦1, . . . , 𝑦𝑛 = 0 by

Pr(0 . . . 0|𝑢4𝑢*
4) = ⟨𝑒⊗𝑛

0 , 𝑢4𝑢*
4𝑒⊗𝑛

0 ⟩ = 2−2𝑛

⎛
⎝

1∑︁

𝑥1,...,𝑥𝑛=0
(−1)𝑓(𝑥1,...,𝑥𝑛)

⎞
⎠

2

=
{︃

0 if 𝑓 is balanced
1 if 𝑓 is constant

Thus one may deterministically distinguish between the two cases using only one
application of 𝑈𝑓 .

In the Deutsch-Josza example, the computation consisted only of Hadamards and
queries to 𝑓 . The Hadamards orchestrated a system of superpositions and, later,
cancellations of the coefficients for the various basis vectors in such a way that exactly
solved the problem, albeit a problem designed specifically to be easy for such a simple
quantum computation.

But are superposition and cancellations really the crux of what makes quantum
special? A result from Schwarz and Van den Nest challenges this idea.

9

Theorem 4.3 (Schwarz, Van den Nest). A wide variety of architectures for quantum
computations (including ones that are similar to Shor’s algorithm and the Deutsch-Josza
algorithm) can be simulated efficiently if the classical outcome probabilities are very
“peaky.”

We gain from this result an intuition that quantum computations relying on the
superposition and interference between different basis states can only yield an exponential
speedup if the final output distribution is not concentrated on too few of the possible
outcomes. In other words, there is more to the story than simply interference.
4.3 Entanglement
We refer the reader to the Quora article4 by current Caltech postdoc Andru Gheorghiu,
which gives an excellent perspective on the utility of entanglement as a resource for
quantum algorithms.

But is entanglement sufficient for quantum computation? No. In fact, we will
now illustrate why most quantum states are actually useless for quantum computation
despite having lots of entanglement.
Theorem 4.4 (Gross, Flammia, Eisert). Most quantum states are useless for quantum
computation.
Proof strategy. For an 𝑛 qubit computation, we imagine taking a random pure state
𝜌in = 𝑢𝑢* on 𝐻⊗𝑛 as the input to the quantum computation. Meanwhile, we restrict
the quantum computation to be polynomial-size and require the unitary operation 𝑉
that it implements to have some bounded length 𝐿. We suppose that such a quantum
computation could allow one to solve an interesting problem, and then we show that
you could do the same thing by tossing 𝑛 (classical) coins, meaning the interesting
problem could also be solved by an efficient randomized classical computation.

For a fixed 𝑉 , 𝑢, and 𝑦1, . . . , 𝑦𝑛, let

𝛼 = Pr(𝑦1 . . . 𝑦𝑛|𝑉 𝑢𝑢*𝑉 *) = tr(𝑒*
𝑦1 ⊗ . . . ⊗ 𝑒*

𝑦𝑛
𝑉 𝑢𝑢*𝑉 *𝑒𝑦1 ⊗ . . . ⊗ 𝑒𝑦𝑛

= tr(𝑣𝑣*𝑢𝑢*)

where we have implicitly defined 𝑣 = 𝑉 *𝑒𝑦1 ⊗ . . . ⊗ 𝑒𝑦𝑛 . Now if we consider 𝑉 fixed but
randomize over 𝑢, we can compute the expectation value of this random number (over
𝑢):

E[𝛼] = tr
(︃

𝑣𝑣*
∫︁

S(𝐻⊗𝑛
𝑢𝑢*d𝜇(𝑢)

)︃
= tr(𝑣𝑣*)

dim(𝐻⊗𝑛) = ⟨𝑣, 𝑣⟩
2𝑛

= 1
2𝑛

.

Here, we have used the Haar-integration formula for 𝑘 = 1. Since 𝑢 ∈ S(𝐻⊗𝑛) is a
Haar-random vector, we can use higher order Haar integration to establish exponential
concentration around this mean value.

Proposition 4.5. Fix a unit vector 𝑣 ∈ S(𝐻⊗𝑛) and choose 𝑢 ∈ S(𝐻⊗𝑛) uniformly from
the Haar measure. Then, there is a constant 𝑐 > 0 such that for any 𝜏 > 0

Pr
[︂⃒⃒
⃒⃒tr(𝑣𝑣*𝑢𝑢*) − 1

2𝑛

⃒⃒
⃒⃒ ≥ 𝜏

]︂
≤ exp

(︁
−𝑐2𝑛𝜏2

)︁
.

4https://www.quora.com/How-is-quantum-entanglement-beneficial-in-quantum-computers

10

The argument is very similar to the concentration step in Lecture 6 (bound moments
using the Haar-integration formula and apply the exponential Markov inequality).
Alternatively, one could also use concentration of measure (Levi’s Lemma).

Proposition 4.5 implies that the output distribution will be close to flat after
randomizing over 𝑢, and would be simulatable by flipping classical coins.

The only chance to circumvent this argument is to choose 𝑢 randomly but then
choose 𝑉 wisely in a 𝑢-dependent way. However, a counting argument shows that
we simply don’t have enough knobs to turn in 𝑉 to make a difference. There are 2𝑛

extended standard basis vectors 𝑦1 . . . 𝑦𝑛 (measurement), and 𝑛𝐿|𝐺|𝐿 different unitaries
𝑉 of length 𝐿, where |𝐺| is the number of gates in the unviersal gate set. Thus,

Pr
𝑢

[︂(︂
max

𝑉
max
𝑦1...𝑦𝑛

⃒⃒
⃒⃒Pr[𝑦1 . . . 𝑦𝑛|𝑉 𝑢𝑢*𝑉 *] − 1

2𝑛

⃒⃒
⃒⃒
)︂

≥ 𝜀

]︂
≤ 𝑛𝐿|𝐺|𝐿2𝑛 exp(−𝑐2𝑛𝜀2) (11)

where the maximum is taken over all basis states and all unitaries 𝑉 of length 𝐿. For
constant 𝜀 and 𝐿 = poly(𝑛), this probability will be small for sufficiently large 𝑛, and
thus the output distribution is approximately the uniform distribution and can be
simulated by flipping 𝑛 classical coins.

Lecture 09: Matrix rank

Scribe: Hsin-Yuan Huang

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
April 29, 2019

1 Agenda
This lecture is devoted to recalling and gathering fundamental and useful properties of
the matrix rank.

1. Definition
2. Computing the matrix rank
3. Uniqueness of decompositions
4. Upper bounds on the maximal rank
5. Typical rank
6. Low-rank approximation and the Eckart-Young Theorem

Lecture 10 is then devoted to generalizing the matrix rank to tensors. We shall see that
the tensor rank behaves very differently and is much more challenging to handle.

2 Definition of matrix rank
Let 𝑉 and 𝑊 be finite dimensional inner product spaces. Let 𝑉 * and 𝑊 * denote their
dual spaces and fix 𝑣* ∈ 𝑉 * and 𝑤 ∈ 𝑊 . Consider the linear map 𝑤 ⊗ 𝑣* : 𝑉 → 𝑊
defined by

𝑥 ↦→ 𝑤𝑣*𝑥 = 𝑤⟨𝑣, 𝑥⟩
The linear hull of all such elementary maps forms ℒ(𝑉, 𝑊) – the space of linear operators
from 𝑉 to 𝑊 .

Definition 2.1 (rank-one operator). A linear operator 𝑋 ∈ ℒ(𝑉, 𝑊) has rank one if it
corresponds to an elementary tensor product: 𝑋 = 𝑤𝑣* for 𝑣* ∈ 𝑉 * (𝑣 ∈ 𝑉) and
𝑤 ∈ 𝑊 .

The matrix rank is a straightforward generalization of this concept.

Definition 2.2 (matrix rank). The rank of an operator 𝑋 ∈ ℒ(𝑉, 𝑊) is the smallest number
𝑟 such that 𝑋 can be represented as a sum of 𝑟 rank-one tensor products:

𝑋 =
𝑟∑︁

𝑖=1
𝑤𝑖𝑣

*
𝑖 .

We emphasize that this definition may seem non-standard. The following equivalence
relation shows that it nonetheless captures the same concept.

Proposition 2.3. Fix 𝑋 ∈ ℒ(𝑉, 𝑊). The following are equivalent:

2

1. rank: 𝑋 has rank 𝑟

2. column rank: 𝑟 = dim(Im(𝑋))

3. row rank: 𝑟 = dim(𝑉) − dim(ker(𝑋))

4. determinantal rank: all size (𝑟 + 1) minors of any matrix representation have
determinant zero.

Proof sketch. We will show how 1. implies 2. For the remaining equivalences, we refer
to standard textbooks and lecture notes on linear algebra. Note that minimiality of the
decomposition 𝑋 = ∑︀𝑟

𝑖=1 𝑤𝑖 ⊗𝑣*
𝑖 ensures that {𝑣1, . . . , 𝑣𝑟} ⊂ 𝑉 and {𝑤1, . . . , 𝑤𝑟} ⊂ 𝑊

are linearly independent. Indeed, suppose that this were not the case: 𝑤𝑟 = ∑︀𝑟−1
𝑖=1 𝜆𝑗𝑤𝑗 .

Then,

𝑋 =
𝑟∑︁

𝑖=1
𝑤𝑖 ⊗ 𝑣*

𝑖 =
𝑟−1∑︁

𝑖=1
𝑤𝑖 ⊗ 𝑣*

𝑖 +
𝑟−1∑︁

𝑖=1
𝜆𝑖𝑤𝑖 ⊗ 𝑣*

𝑟 =
𝑟−1∑︁

𝑖=1
𝑤𝑖 ⊗ (𝑣𝑖 + 𝜆𝑖𝑣𝑟)*

which would contradict minimality. Next note that

𝑋𝑥 =
𝑟∑︁

𝑖=1
𝑤𝑖⟨𝑣𝑖, 𝑥⟩ =

𝑟∑︁

𝑖=1
𝜉𝑖𝑤𝑖 ∈ span{𝑤1, . . . , 𝑤𝑟}.

Choosing different inputs 𝑥 leads to different coefficients 𝜉𝑖 and we can reach all of
span{𝑤1, . . . , 𝑤𝑟}. Linear independence ensures that this is a 𝑟-dimensional subspace
of 𝑊 .

3 Computing the matrix rank
There is an one-to-one correspondence between linear operators 𝑋 ∈ ℒ(𝑉, 𝑊) and
dim(𝑊) × dim(𝑉) matrices.

Fact 3.1. Computing the matrix rank is easy!

Several efficient algorithms exist, each with their own advantages and drawbacks.
All of them requires Θ(𝑑3) arithmatic operations to compute the matrix rank when
dim(𝑉) = dim(𝑊) = 𝑑. For example,

1. Gaussian elimination: This can be done analytically but floating point algorithms
can become unreliable.

2. Singular value decomposition: It is stable and can provide the minimum rank
decomposition but slightly more expensive.

3. QR decomposition with column pivoting: Less expensive than SVD and more
robust than Gaussian elimination.

3

4 Minimal rank decompositions and uniqueness
Fix a linear operator 𝑋 ∈ ℒ(𝑉, 𝑊). The singular value decomposition readily provides
a minimal rank decomposition.

Theorem 4.1 (Singular value decomposition). The singular value decomposition (SVD)
decomposes any matrix 𝑋 ∈ ℒ(𝑉, 𝑊) into a triple of structured matrices:

𝑋 = 𝑈Σ𝑉 * = [𝑢1, . . . , 𝑢𝑟]diag(𝜎1, . . . , 𝜎𝑟)[𝑣1, . . . , 𝑣𝑟]* =
𝑟∑︁

𝑖=1
𝜎𝑖𝑢𝑖𝑣

*
𝑖 .

The matrices 𝑈 ∈ ℒ(𝑊, 𝑊) and 𝑉 ∈ ℒ(𝑉, 𝑉) are linear isometries (equivalently:
{𝑢1, . . . , 𝑢𝑟} ⊂ 𝑊 and {𝑣1, . . . , 𝑣𝑟} ⊂ 𝑉 are orthonormal sets of vectors) and 𝜎1, . . . , 𝜎𝑟 >
0 are strictly positive numbers (singular values). Computing the SVD requires 𝒪(𝑑3)
arithmetic operations.

The SVD is the work-horse of numerical linear algebra. For our purposes it provides
two types of highly relevant information:

1. The matrix rank 𝑟 is just the number of non-zero singular values.
2. A minimal rank decomposition with rich structure:

𝑋 = 𝑈Σ𝑉 * =
𝑟∑︁

𝑖=1
𝜎𝑖𝑢𝑖𝑣

*
𝑖 ≃

𝑟∑︁

𝑖=1
𝜎𝑖𝑢𝑖 ⊗ 𝑣*

𝑖 .

Fact 4.2. Computing minimal rank decompositions of matrices is easy!

Next we want to address another fundamental question: are these minimal rank
decomposition unique? Firstly, note that each matrix factorization carries two kinds of
trivial ambiguities:

1. Permutation of factors pairs: Choose 𝜋 ∈ 𝒮𝑟. Then, permuting factor pairs
(𝑢𝜋(𝑖), 𝑣𝜋(𝑖)) does not change the decomposition:

𝑟∑︁

𝑖=1
𝑢𝜋(𝑖) ⊗ 𝑣*

𝜋(𝑖) =
𝑟∑︁

𝑖=1
𝑢𝑖 ⊗ 𝑣*

𝑖 = 𝑋.

2. Scaling of factor pairs: Fix non-zero 𝛼1, . . . , 𝛼𝑟 ∈ F. Then, scaling each factor
pair (𝑢𝑖, 𝑣𝑖) ↦→

(︁
𝛼−1

𝑖 𝑢𝑖, �̄�𝑣𝑖

)︁
does not change the decomposition:

𝑟∑︁

𝑖=1
𝛼−1

𝑖 𝑢𝑖 ⊗ (�̄�𝑖𝑣𝑖)* =
𝑟∑︁

𝑖=1

𝛼𝑖

𝛼𝑖
𝑢𝑖 ⊗ 𝑣*

𝑖 .

Such symmetries are intrinsic to any factorization and cannot be avoided.

Definition 4.3. We call a minimal rank decomposition of operators 𝑋 ∈ ℒ(𝑉, 𝑊) ≃
𝑊 ⊗ 𝑉 * unique if it is uniquely determined up to trivial symmetries (permutation and
scaling).

4

Proposition 4.4. Minimal rank factorizations of operators 𝑋 ∈ ℒ(𝑉, 𝑊) are never
unique.

Proof. Fix 𝑋 ∈ ℒ(𝑉, 𝑊) and apply an SVD: 𝑋 = 𝑈Σ𝑉 *. Choosing 𝑢1, . . . , 𝑢𝑟 ∈ 𝑊
to be the columns of 𝑈 and 𝑣1, . . . , 𝑣𝑟 ∈ 𝑉 to be the rows of 𝑉 gives rise to a minimal
rank decomposition. Use I = ∑︀𝑟

𝑖=1 𝑒𝑖𝑒
*
𝑖 t conclude

𝑟∑︁

𝑖=1
𝜎𝑖𝑢𝑖𝑣

*
𝑖 =

𝑟∑︁

𝑖=1
𝑈Σ𝑒𝑖𝑒

*
𝑖 𝑉 * = 𝑈Σ𝑉 * = 𝑋.

Evidently, this is a minimal rank decomposition. However, we could also have included
in additional invertible map 𝑅:

𝑋 = 𝑈Σ𝑉 * = 𝑈Σ𝑅𝑅−1𝑉 * =
𝑟∑︁

𝑖=1
𝑣𝑖�̃�

*
𝑖 .

This is also a valid minimal rank decomposition. Unless 𝑅 is a signed permutation
matrix or a diagonal scaling matrix, this alternative decomposition is not related to the
orginal one via a trivial symmetry operation.

5 Upper bounds on the maximal rank
Theorem 5.1. The rank of any 𝑋 ∈ ℒ(𝑉, 𝑊) obeys 𝑟 ≤ min{dim(𝑉), dim(𝑊)}.

Proof. Use the equivalent definitions for rank from Proposition 2.3. The column-rank
definition readily implies

𝑟 =dim(Im(𝑋)) ≤ dim(𝑉),

while a row-rank definition ensures

𝑟 =dim(Im(𝑋*)) ≤ dim(𝑊).

Both bounds are necessarily valid and we can without loss choose the minimum of both
to make the bound as tight as possible.

6 Typical rank
Typical rank addresses the following question: what matrix rank do we expect to see for
generic or typical matrices? Such typical statements require endowing the space of all
operators ℒ(𝑉, 𝑊) with a “fair” measure. One way to achieve this is to consider random
matrices with independent entries that follow a continuous distribution. Standard
Gaussian matrices meet all these desiderata:

𝑋 =

⎛
⎜⎝

𝑔11 . . . 𝑔1𝑛
...

𝑔𝑛1 . . . 𝑔𝑛𝑛

⎞
⎟⎠,

5

where each 𝑔𝑖𝑗 is an independent instance of a standard Gaussian random variable:
𝑔𝑖𝑗

i.i.d.∼ 𝒩 (0, 1) for real-valued matrices and 𝑔𝑖𝑗
i.i.d.∼ 𝒩 (0, 2−1/2) + 𝑖𝒩 (0, 2−1/2) for

complex-valued matrices. Such Gaussian matrices correspond to matrix representations
of generic operators. Rotational invariance moreover ensures that the choice of basis is
irrelevant.

Fact 6.1. A typical/generic matrix – e.g. a matrix with standard Gaussian entries –
saturates the rank inequality 𝑟 ≤ min{dim(𝑉), dim(𝑊)} with probability one.

This fundamental fact from random matrix theory holds true regardless whether we
work with real-valued or complex matrices. It highlights that the matrix rank bound is
tight in a strong sense: it is saturated for almost all matrices.

7 Low-rank approximations and the Eckart-Young theorem
Theorem 7.1 (Eckart-Young Mirski theorem). Let 𝑋 ∈ ℒ(𝑉, 𝑊) be a matrix with SVD
𝑋 = 𝑈Σ𝑉 *. Then, the best rank-𝑘 approximation is the truncated SVD:

𝑋𝑘 = 𝑈diag(𝜎1, . . . , 𝜎𝑟, 0, . . . , 0)𝑉 *.

It achieves
‖𝑋𝑟 − 𝑋‖2

𝐹 =
𝑟∑︁

𝑖=𝑘+1
𝜎𝑖.

Remark 7.2. The original Eckart-Young theorem proves optimality of the truncated SDP
for approximation in operator norm.

Proof. We try to find the solution to the following problem:

minimize ‖𝑍 − 𝑋‖2
𝐹

subject to rank(𝑍) = 𝑘.

First, note that

‖𝑍 − 𝑋‖2
𝐹 =tr(𝑍𝑍*) − tr(𝑋𝑍*) − tr(𝑍*𝑋) + tr(𝑋𝑋*)

=‖𝑍‖2
𝐹 + ‖𝑋‖2

2 − tr(𝑋𝑍*) − tr(𝑋*𝑍).

We need to make these trace-inner products as large as possible. Von-Neumann’s trace
inequality (which uses Birkhoff-von Neumann) states that

|tr(𝑋𝑍*)| ≤
𝑟∑︁

𝑖=1
𝜎𝑖(𝑋)𝜎𝑖(𝑍)

with equality if and only if 𝑋 = 𝑈Σ𝑉 * and 𝑍 = 𝑈𝐷𝑉 *. This tells us that the SVD
provides us with the “right basis rotations: 𝑍 = ∑︀𝑟

𝑖=1 𝜆𝑖𝑢𝑖𝑣
*
𝑖 . But at most 𝑟 singular

values can be non-zero. Therefore,

‖𝑍 − 𝑋‖2
𝐹 =

𝑟∑︁

𝑖=1
𝜎2

𝑖 +
𝑟∑︁

𝑖=1
𝜆2

𝑖 − 2
𝑟∑︁

𝑖=1
𝜆𝑖𝜎𝑖 =

𝑟∑︁

𝑖=1
(𝜎𝑖 − 𝜆𝑖)2.

This expression is minimized if we set 𝜆1 = 𝜎1, . . . , 𝜆𝑘 = 𝜎𝑘, 𝜆𝑘+1 = · · · = 𝜆𝑟 = 0.

6

This theorem has profound implications for data processing.

∙ Greed is good: The theorem justifies a greedy approach to matrix factorization:
find the largest rank-one factor, peel it off and repeat. You can expect progress
by going from rank-𝑘 to rank-(𝑘 + 1).

∙ Dimension reduction: The Eckart-Young-Mirski theorem provides the foundation
for dimension reduction (such as principal component analysis) in data analysis –
an important subroutine in machine learning. The idea of low-rank approximation
is also used extensively in modern recommendation system such as those powering
YouTube and Netflix.

∙ Noise resilience: If you wiggle the original matrix a little bit, the best rank-𝑘
approximation changes slightly but is still a good approximation to the original
matrix. Hence it is robust against (small) noise corruption.

Fact 7.3. The Eckart-Young theorem justifies greedy approaches to matrix factorization:
find the largest rank-one factor, peel it off and iterate. Increasing the rank in an
approximation gets you closer to the true underlying matrix.

Lecture 10: Tensor rank

Scribe: Richard Kueng

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
May 01, 2019

1 Agenda
Last lecture was devoted to studying several desirable features of matrix rank, as well
as their implications. Today, we will extend this rank discussion to tensors. We shall
see that, as a rule, tensor rank behaves very differently from its matrix-counterpart and
is considerably more challenging to handle.

1. Definition of tensor rank
2. Computation of tensor rank
3. Uniqueness of minimal rank decompositions
4. Upper bounds on the maximal rank
5. Tensor rank depends on underlying field (C vs. R)
6. Typical rank
7. Low-rank approximations and border rank
8. Examples: the standard inner product and the Hadamard product as tensors

We will mostly restrict our attention to tensors of order three. Generalizations to
tensors of higher order are straightforward.

2 Recapitulation: Matrix rank
The rank of an operator 𝑋 ∈ ℒ(𝑉, 𝑊) is the smallest number of rank-one tensors
required to represent 𝑋:

𝑋 =
𝑟∑︁

𝑖=1
𝑤𝑖 ⊗ 𝑣*

𝑖 .

It has many interesting and desirable properties:

1. Computation: several efficient algorithms exist for computing the matrix rank.
2. Identifying minimal rank decompositions and uniqueness: The SVD provides an

efficient way to compute minimal rank decompositions. These are never unique
3. Upper bound: 𝑟 ≤ min{dim(𝑉), dim(𝑊)}
4. typical rank: a generic matrix saturates the rank bound with probability one

(regardless whether we work over R, or C)
5. Low rank approximations: The Eckart-Young-Mirsky states that the best rank-𝑘

approximation is a truncated SVD. Increasing 𝑘 can only increase approximation
accuracy.

2

3 Definition of tensor rank
Let 𝐴, 𝐵, 𝐶 be inner product spaces with dimensions 𝑎, 𝑏 and 𝑐. We also assume

𝑎 ≥ 𝑏 ≥ 𝑐.

Recall that the tensor product space 𝐴 ⊗ 𝐵 ⊗ 𝐶 is the linear hull of all elementary
tensor products:

𝑡 = 𝑎 ⊗ 𝑏 ⊗ 𝑐 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶.

Definition 3.1. A tensor 𝑡 ∈ 𝐴 ⊗ 𝐵 ⊗ 𝐶 has rank-one if it corresponds to an elementary
tensor product.

Definition 3.2. The rank of a tensor 𝑡 ∈ 𝐴 ⊗ 𝐵 ⊗ 𝐶 is the smallest number 𝑟 such that 𝑡
can be represented as a sum of 𝑟 rank-one tensors:

𝑡 =
𝑟∑︁

𝑖=1
𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖.

4 Computing the tensor rank
In contrast to the matrix rank – where we can choose between several different efficient
numerical algorithms to compute it – computing the tensor rank is in general very
challenging.

Fact 4.1 (Hastad, 1990). Computing the tensor rank of 𝑡 ∈ 𝐴 ⊗ 𝐵 ⊗ 𝐶 is difficult. It is
NP-complete for any finite field and NP-hard over the rational numbers.

The proof follows from a standard reduction of 3SAT which is known to be NP
complete.

5 Uniqueness of minimal rank decompositions
Any factorization into sums of rank-one tensors is necessarily accompanied by trivial
ambiguities. Let

𝑡 =
𝑟∑︁

𝑖=1
𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖

be a minimal rank decomposition of 𝑡 ∈ 𝐴 ⊗ 𝐵 ⊗ 𝐶. Then, this decomposition is
invariant under permuting factor triples: (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) ↦→ (𝑎𝜋(𝑖), 𝑏𝜋(𝑖), 𝑐𝜋(𝑖)). Here, 𝜋 ∈ 𝒮𝑟

can be any permutation. Indeed,
𝑟∑︁

𝑖=1
𝑎𝜋(𝑖) ⊗ 𝑏𝜋(𝑖) ⊗ 𝑐𝜋(𝑖) =

𝑟∑︁

𝑖=1
𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖 = 𝑡.

Similarly, scaling of individual factors also leaves the final decomposition invariant.
Choose 𝛼𝑖, 𝛽𝑖 ̸= 0. Then, (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) ↦→ (︀

𝛼𝑖𝑎𝑖, 𝛽𝑖𝑏𝑖, (𝛼𝛽)−1𝑐𝑖
)︀

provides a a rank-𝑟
decomposition of 𝑡. Permutation and scaling of factors are trivial ambiguities that
cannot be avoided. A minimal rank decomposition is unique up to trivial ambiguities

3

if it is unique up to scaling and permutation of factors. Recall that minimal rank
decompositions of operators (matrices) are never unique – unless one imposes strong
additional assumptions and constraints. The situation for tensors of order 𝑘 ≥ 3
is very different. A seminal result by Kruskal ensures uniqueness of minimal rank
decompositions under much weaker conditions.

To state this result, we are going to introduce the following useful notation by Kolda.
Let 𝑡 = ∑︀𝑟

𝑖=1 𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖 be a decomposition of 𝑡 ∈ 𝐴 ⊗ 𝐵 ⊗ 𝐶 into rank-one tensors.
Define the three factor matrices

𝐴 = [𝑎1 · · · 𝑎𝑟], 𝐵 = [𝑏1, · · · 𝑏𝑟], 𝐶 = [𝑐1, . . . , 𝑐𝑟].

and set
𝑡 =

𝑟∑︁

𝑖=1
𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖 =: [[𝐴, 𝐵, 𝐶]].

It is easy to keep track of permutation ambiguities in this decomposition. Let Π ∈ R𝑟×𝑟

be a permutation matrix. Then,

[[𝐴Π, 𝐵Π, 𝐶Π]] = [[𝐴, 𝐵, 𝐶]].

Scaling ambiguities act in a similar fashion.

Definition 5.1. The 𝑘-rank of a matrix 𝐴 is the largest number 𝑘𝐴 such that any 𝑘
columns are linearly independent.

This concept is closely related to the spark of a matrix (the smallest number 𝑘 such
that there exists a set of 𝑘 linearly dependent columns).

Theorem 5.2 (Kruskal, 1977). Suppose that 𝑡 ∈ 𝐴 ⊗ 𝐵 ⊗ 𝐶 admits a decomposition

𝑡 =
𝑟∑︁

𝑖=1
𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖 = [[𝐴, 𝐵, 𝐶]].

Suppose that
𝑟 ≤ 1

2(𝑘𝐴 + 𝑘𝐵 + 𝑘𝐶) − 1.

Then 𝑡 has rank-𝑟 and this decomposition is unique up to trivial symmetries (permutations
and scaling).

6 Upper bounds on the maximal tensor rank
Upper bounds on the maximal rank of tensors exist, but they are much weaker than in
the matrix case.

Theorem 6.1. Consider 𝐴 ⊗ 𝐵 ⊗ 𝐶 with dimensions 𝑎, 𝑏 and 𝑐. Then, the rank of any
𝑡 ∈ 𝐴 ⊗ 𝐵 ⊗ 𝐶 obeys

𝑟(𝑡) ≤ min{𝑎𝑏, 𝑎𝑐, 𝑏𝑐}.

4

The proof of this claim is instructive, because it follows a basic line of thoughts. We
know very little about tensors, but a lot about matrices. Therefore, it is often beneficial
to convert tensor problems into matrix problems. The following technical result follows
from such a reduction argument.

Lemma 6.2. Let 𝑡 ∈ 𝐴⊗𝐵 ⊗𝐶. Then, its rank 𝑟 equals the number of rank-one matrices
that are required to span (a space containing) all possible marginalizations

𝑡(𝐴*) := span
{︃

(𝑎* ⊗ I ⊗ I)𝑡 =
𝑟∑︁

𝑖=1
𝛼(𝑎𝑖) ⊗ 𝑏𝑖 ⊗ 𝑐𝑖 : 𝑎* ∈ 𝐴*

}︃
⊂ 𝐵 ⊗ 𝐶 ≃ ℒ(𝐶, 𝐵).

Proof. Suppose that 𝑡 has rank 𝑟 and express it as 𝑡 = ∑︀𝑟
𝑖=1 𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖 (Note that

in contrast to matrices, the vectors 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 need not be linearly independent).
Therefore,

𝑡(𝐴*) ⊂ {𝑏1 ⊗ 𝑐1, . . . , 𝑏𝑟 ⊗ 𝑐𝑟}
is spanned by at most 𝑟 rank-one matrices. Conversely, suppose that 𝑡(𝐴*) is spanned
by 𝑟 rank-one matrices 𝑏1 ⊗ 𝑐1, . . . , 𝑏𝑟 ⊗ 𝑐𝑟. Choose a (orthonormal) basis 𝑎*

1, . . . , 𝑎*
𝑟 of

𝐴*. Then,

𝑡(𝑎*
𝑘) =

𝑟∑︁

𝑖=1
𝑥𝑖,𝑘𝑏𝑖 ⊗ 𝑐𝑖.

Next, let 𝑎1, . . . , 𝑎𝑟 be the dual vectors associated with 𝑎*
1, . . . , 𝑎*

1 (column vs. row
vectors). Then,

𝑡 =
∑︁

𝑘,𝑖

𝑥𝑖,𝑘𝑎𝑘 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖 =
𝑟∑︁

𝑖=1

(︃∑︁

𝑘

𝑥𝑖𝑘𝑎𝑘

)︃

⏟ ⏞
�̃�𝑖

⊗ 𝑏𝑖 ⊗ 𝑐𝑖.

This is a valid decomposition into exactly 𝑟 rank-one factors. Therefore, the tensor rank
can be at most 𝑟.

Proof of Theorem 6.1. The space ℒ(𝐶, 𝐵) has dimension 𝑏𝑐 = dim(𝐶)dim(𝐵). This is
also the maximum number of matrices that are required to span this operator space.
With the previous Lemma, we conclude

𝑟 ≤ dim(𝑡(𝐴*)) = dim(ℒ(𝐶, 𝐵)) = 𝑏𝑐

Permuting tensor factors also establishes 𝑎𝑏 and 𝑎𝑐 as upper bounds.

7 The tensor rank depends on the underlying field
Choose real-valued vector spaces 𝑉 = R𝑚 and 𝑊 = R𝑛. Then, we may represent
𝑋 ∈ ℒ(𝑉, 𝑊) as a real-valued matrix. Alternatively, we could embed 𝑉 ⊂ C𝑚,
𝑊 ⊂ C𝑚 and extend 𝑋 linearly to ℒ(𝑉 , �̃�). The matrix rank does not care: it is the
same in both cases.

5

This is not the case for tensors, as the following example from Kruskal shows. Fix
dim(𝐴) = dim(𝐵) = dim(𝐶) = 2.

𝑡 = 𝑒1 ⊗ 𝑒1 ⊗ 𝑒1 + 𝑒1 ⊗ 𝑒2 ⊗ 𝑒2 − 𝑒2 ⊗ 𝑒2 ⊗ 𝑒1 − 𝑒2 ⊗ 𝑒1 ⊗ 𝑒2.

Over R, this tensor has rank three:

𝑡 =
[︃[︃(︃

1 0 1
0 1 −1

)︃
,

(︃
1 0 1
0 1 1

)︃
,

(︃
1 1 0

−1 1 1

)︃]︃]︃

However, over C, we can find a rank-2 decomposition:

𝑡 =
[︃[︃

1√
2

(︃
1 1

−𝑖 𝑖

)︃
,

1√
2

(︃
1 1
𝑖 −𝑖

)︃
,

(︃
1 1
𝑖 −𝑖

)︃]︃]︃
.

8 Typical rank
The matrix rank bound 𝑟 ≤ min{dim(𝑉), dim(𝑊)} is useful. A typical matrix is going
to saturate it.

For tensors, the situation is quite different. A simple parameter counting argument
suggests the following typical behavior. Consider the tensor product space 𝐴1 ⊗· · ·⊗𝐴𝑘

with dimensions 𝑎1, . . . , 𝑎𝑛. The number of degrees of freedom for a rank-𝑟 tensor is

𝑟(𝛼1 + · · · + 𝛼𝑘) − 𝑟(𝑘 − 1) = 𝑟(𝑎1 + · · · 𝑎𝑘 − (𝑘 − 1)),

while the total degrees of freedom are

dim(𝐴1 ⊗ · · · ⊗ 𝐴𝑘) = 𝑎1 × · · · × 𝑎𝑘.

We expect that the typical rank occurs precisely at the threshold where both numbers
become equal:

𝑟 = ⌈ 𝑎1 · · · 𝑎𝑘

𝑎1 + · · · + 𝑎𝑘 − 𝑘 + 1⌉.

This simple counting argument is approximately correct. Here are some rigorous
results that provide some insights.

Theorem 8.1. 1. (Strassen) The typical rank of an element of C3 ⊗ C3 ⊗ C3 is five
(not the expected four).

2. (Strassen-Lickteig) For all 𝑑 ̸= 3, the typical rank of an element of C𝑑 ⊗ C𝑑 ⊗ C𝑑

is ⌈ 𝑑3

3𝑑−2⌉ (as expected).
3. The typical rank of an element of C2 ⊗ C2 ⊗ C3 and C2 ⊗ C3 ⊗ C3 is three (as

expected).

For tensor products with equal dimension (𝑎1 = . . . 𝑎𝑘 = 𝑎), we have

𝑟 = ⌈ 𝑎𝑘

𝑘(𝑎 − 1) + 1⌉ ∼ 𝑎𝑘−1

𝑘
< 𝑎𝑘−1.

6

The typical rank does not saturate the maximal rank bound!
Finally, the typical rank also depends on the underlying field. Over C the typical

rank is unique, but over R this need not be the case. Tensors in R2 ⊗ R2 ⊗ R2 have
typical rank two and three over R. Monte Carlo experiments reveal that rank-two
tensors fill about 79% of the space, while rank-three tensors fill the remaining 21%.
Rank-one tensors are possible, but occur with probability zero.

9 Low-rank approximations and border rank
Recall that the best rank-𝑘 approximation of a matrix is given by the truncated SVD
(Eckart-Young Theorem). This supports greedy, iterative strategies to approximate a
matrix.

Similar approaches seem like a promising avenue to generalize to tensors. Suppose
𝑡 ∈ 𝐴 ⊗ 𝐵 ⊗ 𝐶 admits a decomposition

𝑡 =
𝑟∑︁

𝑖=1
𝜆𝑖𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖,

where ⟨𝑎𝑖, 𝑎𝑖⟩ = ⟨𝑏𝑖, 𝑏𝑖⟩ = ⟨𝑐𝑖, 𝑐𝑖⟩ = 1 for all 1 ≤ 𝑖 ≤ 𝑟. Assume moreover, that the
weights are arranged in non-increasing order: 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑟. Apparent parallels
to the SVD suggest the following iterative approach for approximating 𝑡:

1. identify the largest contributing rank-one factor 𝜆1𝑎1 ⊗ 𝑏1 ⊗ 𝑐1 (somehow).
2. Subtract its contribution and iterate.

We expect that this greedy method provides us with better and better approximations
of 𝑡.

Unfortunately, this intuition is flawed. Tensors are much more complicated than
matrices. We illustrate this with the following simple example:

𝑡 = 𝑎1 ⊗ 𝑏1 ⊗ 𝑐2 + 𝑎1 ⊗ 𝑏2 ⊗ 𝑐1 + 𝑎2 ⊗ 𝑏1 ⊗ 𝑐1,

where 𝑎1, 𝑎2 ∈ 𝐴, 𝑏1, 𝑏2 ∈ 𝐵 and 𝑐1, 𝑐2 ∈ 𝐶 are linearly independent each. Evidently,
this tensor has rank three. It can, however, be approximated to arbitrary accuracy by a
rank-two tensor:

𝑠(𝜀) = 1
𝜀

((𝑎1 + 𝜀𝑎2) ⊗ (𝑏1 + 𝜀𝑏2) ⊗ (𝑐1 + 𝜀𝑐2) − 𝑎1 ⊗ 𝑏1 ⊗ 𝑐1).

More precisely, let ‖ · ‖ be the Euclidean norm induces by the extended standard inner
product on 𝐴 ⊗ 𝐵 ⊗ 𝐶. Then,

‖𝑡 − 𝑠(𝜀)‖ = 𝜀‖𝑎2 ⊗ 𝑏2 ⊗ 𝑐1 + 𝑎2 ⊗ 𝑏1 ⊗ 𝑐2 + 𝑎1 ⊗ 𝑏2 ⊗ 𝑐2 + 𝜀𝑎2 ⊗ 𝑏2 ⊗ 𝑐2‖

which can be made arbitrarily small. Many different simple examples for this behavior
are known. These examples motivate the following definition:

Definition 9.1 (border rank). A tensor 𝑡 has border rank 𝑟(𝑡) = 𝑟 if it is a limit of tensors
of rank 𝑟, but not a limit of tensors with rank 𝑠 < 𝑟.

7

There is an elegant geometric interpretation of this behavior. Intuitively, 𝑠(𝜀) is
a point on the line spanned by rank-one tensors inside the space of rank-two tensors.
Taking the limit results in a point in the tangent space of 𝑎1 ⊗ 𝑏1 ⊗ 𝑐1. This point on
the tangent line is itself not contained in the set of rank-two-tensors, but infinitesimally
close.

The property of having border rank at most 𝑟 is an algebraic property – similar to
the matrix rank-characterization via vanishing minors. As such it can in principle be
precisely tested by checking whether certain polynomial equations vanish identically.
While this is not efficient by any means, it provides at least a strategy that can be
executed vor very small tensor products.

Remark 9.2 (Relation between rank and border rank). Very little is known about the relation
between rank and border rank. For 𝑡 ∈ 𝐴1 ⊗ · · · 𝐴𝑘 with border rank 2, the actual rank
can be anywhere between 2 and 𝑛. More is known for symmetric tensors 𝑡 ∈ ⋁︀𝑘(𝐴),
because they are closely related to homogeneous polynomials.

10 Examples
10.1 The standard inner product as a order-2 tensor (matrix)

Fix 𝑉 = F𝑑 and define the standard inner product:

𝑉 * × 𝑉 → F ⟨𝑥, 𝑦⟩ =
𝑑∑︁

𝑖=1
�̄�𝑖𝑦𝑖.

This is a bilinear form. The space of bilinear forms is closely related to the tensor
product 𝑉 ⊗ 𝑉 . In fact, we defined 𝑉 ⊗ 𝑉 to be the dual space of the space of all
bilinear forms. In particular,

𝑥 ⊗ 𝑦 : Bil(𝑉, 𝑉) → F 𝐵 ↦→ 𝐵(𝑥, 𝑦).

A moment of thought reveals that the tensor associated with the inner product is

𝑑∑︁

𝑖=1
𝑒𝑖 ⊗ 𝑒*

𝑖 ∈ 𝑉 ⊗ 𝑉 *,

which corresponds to the identity operator I ∈ ℒ(𝑉, 𝑉). We know that this operator
has matrix rank 𝑑 and minimal decompositions are never unique:

I =
𝑟∑︁

𝑖=1
(𝑈𝑒𝑖) ⊗ (𝑈𝑒𝑖)* for any unitary 𝑈 .

This is just a fancy way of saying that the standard inner product is basis-independent.
Next, we turn to the question of computing the inner product:

⟨𝑥, 𝑦⟩ = 𝑥*I𝑦 =
𝑑∑︁

𝑖=1
𝑥*𝑢𝑖𝑢

*
𝑖 𝑦 =

𝑑∑︁

𝑖=1
⟨𝑥, 𝑢𝑖⟩⟨𝑢𝑖, 𝑥⟩.

8

Evaluating this expression requires computing 2𝑑 different inner products in general.
A smart choice of basis substantially reduces the cost for individual scalar product
evaluations. If we opt for the standard basis, both ⟨𝑥, 𝑒𝑖⟩ and ⟨𝑒𝑖, 𝑦⟩ are very cheap to
evaluate. The total arithmetic cost becomes 𝒪(𝑛).

We could also use a very bad – e.g. a generic ONB. In this case the arithmetic cost
could blow up to 𝒪(𝑛2).

10.2 The Hadamard product as an order 3-tensor

Endow 𝑉 = F𝑑 with the standard basis 𝑒1, . . . , 𝑒𝑑. The Hadamard product is typically
defined as

𝑉 × 𝑉 → 𝑉 : 𝑥 ⊙ 𝑦 =
𝑑∑︁

𝑖=1
𝑒𝑖⟨𝑒𝑖, 𝑥⟩⟨𝑒𝑖, 𝑦⟩.

We can view this as a tensor in 𝑉 ⊗ 𝑉 * ⊗ 𝑉 *:

ℎ =
𝑑∑︁

𝑖=1
𝑒𝑖 ⊗ 𝑒*

𝑖 ⊗ 𝑒*
𝑖 .

Modulo vector space dualities (𝑉 ≃ 𝑉 *), this tensor looks like the standard extension
of the identity to order 3:

ℎ =
𝑑∑︁

𝑖=1
𝑒𝑖 ⊗ 𝑒𝑖 ⊗ 𝑒𝑖 = [[I, I, I]].

Kruskal’s theorem on uniqueness shows that this order-three tensor is essentially
unique.

Corollary 10.1. The Hadamard tensor ℎ ∈ 𝑉 ⊗3 has rank 𝑟 = 𝑑 and is unique up to
trivial ambiguities (permutations and scaling), provided that 𝑑 ≥ 2.

Proof. The decomposition (10.2) has rank 𝑟 = 𝑑 and the individual factor matrices
obey 𝑘I = 𝑑 each. Correctness of the matrix rank and uniqueness then follow from
checking Kruskal’s condition:

𝑑 = 𝑟 ≤ 1
2(𝑘I + 𝑘I + 𝑘I) − 1 = 3

2𝑑 − 1.

The resulting inequality is true provided that 𝑑 ≥ 2.

The uniqueness requirement 𝑑 ≥ 2 is perhaps tautological, but worth noting. For
𝑑 = 1, Hadamard and standard inner product coincide. Closer to home, we conclude
the following well-known fact

Fact 10.2. In contrast to standard-inner, wedge and tensor products, the Hadamard
product is basis-dependent.

9

The Hadamard tensor also does not saturate the upper bound on tensor rank:

𝑑 = 𝑟(ℎ) ≪ 𝑑2.

This has meaningful consequences for the computational cost. Similar to the matrix
case, the cost of evaluating tensors is strongly connected to the rank. A rank-𝑟 tensor
will require at least 𝑟 individual arithmetic operations.

For the Hadamard product this cost 𝑟 = 𝑑 is tight. We can use desirable properties
of the standard basis to compute ⟨𝑒𝑖, 𝑥⟩, ⟨𝑒𝑖, 𝑦⟩ and their product at unit cost.

Fact 10.3. The arithmetic cost of computing the Hadamard product is proportional to
rank(ℎ) = 𝑑.

Lecture 11: Strassen’s algorithm for matrix multiplication
Scribe: Richard Kueng

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
April 29, 2019

1 Agenda
1. Recapitulation: matrix multiplication
2. Strassen’s matrix multiplication algorithm
3. The arithmetic complexity model and rigorous improvements for the complexity

of matrix multiplication

2 Recapitulation: matrix multiplication
Let 𝑌 , 𝑍 ∈ R𝑛×𝑛. We use Einstein notation to label the individual matrix entries:
𝑋𝑖

𝑗 denotes the entry in the 𝑖-th row (upper-case index) and the 𝑗-th column (lower-
case index). The matrix product 𝑍 = 𝑌 𝑍 ∈ R𝑛×𝑛 of two square matrices is defined
component-wise:

⎛
⎜⎝

𝑋1
1 · · · 𝑋1

𝑛
...

𝑋𝑛
1 · · · 𝑋𝑛

𝑛

⎞
⎟⎠

⎛
⎜⎝

𝑌 1
1 · · · 𝑌 1

𝑛
...

𝑌 𝑛
1 · · · 𝑌 𝑛

𝑛

⎞
⎟⎠ =

⎛
⎜⎝

∑︀𝑛
𝑘=1 𝑋1

𝑘𝑌 𝑘
1 · · · ∑︀𝑛

𝑘=1 𝑋1
𝑘𝑌 𝑘

𝑛
...∑︀𝑛

𝑘=1 𝑋𝑛
𝑘𝑌 𝑘

1 · · · ∑︀𝑛
𝑘=1 𝑋𝑛

𝑘𝑌 𝑘
𝑛

⎞
⎟⎠.

More succinctly: Let 𝑍 = 𝑋𝑌 ∈ R𝑛×𝑛 be the matrix product. Then, its coefficients
correspond to

𝑍𝑖
𝑗 =

𝑛∑︁

𝑘=1
𝑋𝑖

𝑘𝑌 𝑘
𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. (1)

Remark 2.1 (Restriction to real-valued square matrices). For today, we will restrict our at-
tention to matrix products of real-valued, square 𝑛 × 𝑛 matrices. More general rect-
angular matrices can be converted into square matrices by adding rows/columns of
zero. Moreover, the product of complex-valued matrices can be decomposed into real-
and imaginary parts. This decomposition results in four sub-multiplications that are
effectively real-valued.

Formula (1) suggests the following general cost for computing the product 𝑍 = 𝑋𝑌
of two 𝑛×𝑛 matrices. Computing a coefficient 𝑍𝑖

𝑗 requires 𝑛 elementary multiplications
(𝑋𝑖

𝑘𝑌 𝑘
𝑗 for 1 ≤ 𝑘 ≤ 𝑛) and 𝑛 subsequent elementary additions. There are in total

𝑛2 coefficients, so the total arithmetic cost is 𝑛3 elementary multiplications and 𝑛3

elementary additions.

Fact 2.2. The arithmetic cost of matrix multiplication by means of Formula (1) is 2𝑛3.

This total arithmetic cost is of order 𝒪(𝑛3). A natural question is whether this
scaling in the problem size is optimal. Any improvement could lead to faster matrix

2

multiplication algorithms. This is highly desirable in practice, since matrix multipli-
cations are at the very core of most numerical linear algebra techniques. We use the
following notation to indicate such potential improvements.

Definition 2.3 (exponent of matrix multiplication). The exponent of matrix multiplication
𝜔 is the smallest number such that a (potentially asymptotic) matrix multiplication
algorithm exists whose arithmetic cost obeys 𝒪(𝑛𝜔).

Fact 2.2 asserts 𝜔 ≤ 3. Also, we do not make any assumption about additional
structure in the matrices that we wish to multiply. A general 𝑛×𝑛 matrix has 𝑛2 degrees
of freedom. This imposes a fundamental lower bound on the matrix multiplication
exponent: 𝑛𝜔 ≥ 2𝑛2 arithmetic operations are necessary to input the problem description.
Combining both yields

2 < 𝜔 ≤ 3. (2)

Naively, one might assume that 𝜔 = 3 (standard matrix multiplication) is optimal.
However, this is not the case. The current record is

𝜔 ≤ 2.3729

and was achieved by Le Gall in 2014. This remarkable improvement is a consequence of
tensor analysis. We will devote this lecture and the next one to point out the ideas and
methods behind these impressive developments.

3 Strassen’s algorithms
3.1 Strassen’s algorithm for multiplying 2× 2 matrices
All fundamental improvements in the cost of matrix multiplication date back to a key
observation that is due to Strassen from 1969. According to Landsberg, Strassen tried to
prove that the naive matrix multiplication cost of 𝜔 = 3 is optimal. In order to achieve
this goal, he focused on 2 × 2 matrices defined on a finite field, where an exhaustive
analysis is possible. His thorough analysis had quite the opposite effect. He found an
alternative way of doing matrix multiplication that readily generalizes to any field. Set
𝑛 = 2 and define the following seven numbers:

𝑚1 =
(︁
𝑋1

1 + 𝑋2
2
)︁(︁

𝑌 1
1 + 𝑌 2

2
)︁
,

𝑚2 =
(︁
𝑋2

1 + 𝑋2
2
)︁
𝐵1

1,

𝑚3 =𝑋1
1
(︁
𝑌 1

2 − 𝑌 2
2
)︁
,

𝑚4 =𝑋2
2
(︁
𝑌 2

1 − 𝑌 1
1
)︁
,

𝑚5 =
(︁
𝑋1

1 + 𝑋1
2
)︁
𝑌 2

2,

𝑚6 =
(︁
𝑋2

1 −𝑋1
1
)︁(︁

𝑌 1
1 + 𝑌 1

2
)︁
,

𝑚7 =
(︁
𝑋1

2 −𝑋2
2
)︁(︁

𝑌 2
1 + 𝑌 2

2
)︁
.

3

One can then check that all entries of the product 𝑍 = 𝑋𝑌 ∈ R2×2 correspond to
elementary linear combinations of these seven numbers:

𝑍 =
(︃

𝑚1 + 𝑚4 −𝑚5 + 𝑚7 𝑚3 + 𝑚5
𝑚2 + 𝑚4 𝑚1 −𝑚2 + 𝑚3 + 𝑚6

)︃
∈ R2×2.

It is instructive to group this algorithm into three stages:

1. Linear pre-processing: Compute 𝑟 = 7 linear combinations of each original input
matrix:

𝑎1 =𝑋1
1 + 𝑋2

2, 𝑎2 = 𝑋2
1 + 𝑋2

2, . . . , 𝑎7 = 𝑋1
2 −𝑋2

2,

𝑏1 =𝑌 1
1 + 𝑌 2

2, 𝑏2 = 𝑌 1
1, . . . , 𝑏7 = 𝑌 2

1 + 𝑌 2
2.

2. Elementary multiplications: Compute 𝑚𝑖 = 𝑎𝑖𝑏𝑖 for each 1 ≤ 𝑖 ≤ 7 = 𝑟.
3. Linear post-processing: infer the entries of the final matrix product by computing

linear combinations of the 𝑚𝑖’s.

We emphasize that scalar multiplications are isolated and only occur in stage 2. What
is more, Strassen’s algorithm requires fewer scalar multiplications than naive matrix
multiplication: 7 instead of 8. This reduction in multiplication seems to come at an
additional price in elementary additions: 18 (10 for pre-processing plus 8 for post-
processing) instead of 8 for standard matrix multiplication.
3.2 Strassen’s algorithm for multiplying 2𝑑 × 2𝑑 matrices
Strassen’s basic algorithm seems more resource-demanding than the naive procedure.
However, it does get by with fewer multiplications. This small saving in multiplica-
tions does not (yet) offset the extra cost in linear pre- and post-processing. Perhaps
surprisingly, this offset changes when we extend Strassen’s basic algorithm to higher-
dimensional matrix products.

The divide and conquer rule allows for readily generalizing Strassen’s algorithm to
matrix multiplication of 2𝑑 × 2𝑑 matrices. Simply divide 𝑋 and 𝑌 into 2 × 2 block
matrices

𝑋 =
(︃

𝑋1
1 𝑋1

2
𝑋2

1 𝑋2
2

)︃
, 𝑌 =

(︃
𝑌 1

1 𝑌 1
2

𝑌 2
1 𝑌 2

2

)︃
,

where each block is a 2𝑑−1×2𝑑−1 matrix. The intermediate values in Strassen’s algorithm
readily generalize to matrices:

𝑀1 =
(︁
𝑋1

1 + 𝑋2
2
)︁(︁

𝑌 1
1 + 𝑌 2

2
)︁
∈ R2𝑑−1×2𝑑−1

,

...

𝑀7 =
(︁
𝑋1

2 −𝑋2
2
)︁(︁

𝑌 2
1 + 𝑌 2

2
)︁
∈ R2𝑑−1×2𝑑−1

.

So does linear post-processing

𝑍 =
(︃

𝑀1 + 𝑀4 −𝑀5 + 𝑀7 𝑀3 + 𝑀5
𝑀2 + 𝑀4 𝑀1 −𝑀2 + 𝑀3 + 𝑀6

)︃
∈ R2𝑑×2𝑑

.

4

This ansatz reduces the task of computing a single 2𝑑 × 2𝑑 matrix multiplication to
seven matrix multiplications of size 2𝑑−1 × 2𝑑−1. Nothing prevents us from repeating
this argument inductively: re-use Strassen to decompose each 2𝑑−1 × 2𝑑−1 matrix
multiplication into seven matrix multiplications of size 2𝑑−2× 2𝑑−2. Iterate this division
recursively 𝑑 times until the submatrices degenerate into numbers. For 𝑛 = 2𝑑, this
recursive procedure results in

7𝑑 =
(︁
2𝑑
)︁log2(7)

≃ 𝑛2.807

arithmetic multiplications. This is strictly smaller than the 𝑛3 elementary multiplications
associated with naive matrix multiplication. This simple counting argument does not
(yet) take into account the extra effort in linear pre- and post-processing that is required
for sequentially applying Strassen multiplication. We will devote Section 4 to a thorough
analysis of the size of this extra cost. This study will highlight that the number of
multiplications asymptotically dominate the total arithmetic effort:

Theorem 3.1 (Strassen’s improvement for matrix multiplication). Asymptotically, a
recursive application of Strassen’s algorithm achieves a matrix multiplication exponent
𝜔 ≃ 2.807 < 3.

We conclude this section with a couple of remarks. Strassen’s algorithm only works
for matrices whose dimension is a power of two. This reshaping may be achieved by
zero-padding: extend the original matrices with zero-rows and columns until they have
a 2𝑑 × 2𝑑 shape. Theorem 3.1 asserts that this seemingly counter-intuitive step may
speed up the computation. For sufficiently large dimensions, it is beneficial to first
increase the problem dimension to subsequently apply a faster algorithm.

Secondly, Strassen’s algorithm – like most divide and conquer methods – may be
parallelized to a considerable degree. A smooth working of the algorithm, however,
requires a considerable amount of data transfer within the cores at each recursion step.

Finally, Strassen’s algorithm is used in practice. Basic Linear Algebra Subprograms
(BLAS) use it as a subroutine. The reduction in arithmetic cost comes at the prize
of additional memory and reduced numerical stability. For these reasons, Strassen’s
algorithm is mostly used for integer matrix multiplication. Moreover, these practical im-
plementations switch to the naive matrix multiplication procedure, once the submatrices
are small enough. They do not carry out the full recursive reduction.

4 Asymptotic dominance of multiplications in Strassen’s algorithm
4.1 The algebraic complexity model
In theoretical computer science, the complexity of an algorithm is usually measured
in runtime. This measure the number of steps that a Turing machine would execute
before terminating and providing the output.

Today, we shall focus on a conceptually similar, but slightly different computation
model: the algebraic complexity model. There an algorithm is a sequence of algebraic
steps. With matrix multiplication in mind, step 𝑙 is a statement of the following form:

5

1. constant initialization: 𝑡𝑙 ← 𝑐 for any 𝑐 ∈ R,
2. read in the problem description: 𝑡𝑙 ← 𝑋𝑖

𝑗 , or 𝑡𝑙 ← 𝑌 𝑖
𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛,

3. arithmetic computation: 𝑡𝑙 ← 𝑡𝑝 ∘ 𝑡𝑞, where1 ∘ ∈ {+,−,×} and 𝑝, 𝑞 < 𝑙,
4. solution output: 𝑍𝑖

𝑗 ← 𝑡𝑝 for some 𝑝 < 𝑙 and 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

We say that such an arithmetic algorithm computes a matrix product 𝑍 = 𝑋𝑌 , if it
outputs 𝑍𝑖

𝑗 = ∑︀𝑛
𝑘=1 𝑋𝑖

𝑘𝑌 𝑘
𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. The running time, or complexity, of the

algorithm is the total number of steps disregarding read-in (step 2) and output (step
4). For matrix multiplication, this simplification is justified. The lower bound (2) on
the complexity of computing matrix products is strictly larger than the quadratic cost
associated with problem read-in and solution output.

When dealing with matrix multiplication algorithms in the algebraic complexity
model, it is sufficient to focus on algorithms of a very special and desirable form.

Definition 4.1 (Normal form for matrix multiplication). We say that a matrix multiplication
algorithm is in normal algebraic form if it computes 𝑍 = 𝑋𝑌 by executing the following
steps:

1. For 1 ≤ 𝑖 ≤ 𝑟: compute 𝛼𝑖, a linear combination of the entries of 𝑋,
2. For 1 ≤ 𝑖 ≤ 𝑟: compute 𝛽𝑖, a linear combination of the entries of 𝑌 ,
3. For 1 ≤ 𝑖 ≤ 𝑟: compute 𝑝𝑖 = 𝛼𝑖𝛽𝑖.
4. For 1 ≤ 𝑖, 𝑗 ≤ 𝑛: compute 𝑍𝑖

𝑗 as a linear combination of the 𝑝𝑖’s.

All these linear combinations are fixed, i.e. they don’t depend on the inputs 𝑋 and 𝑌 .
The size of this normal form algorithm is characterized by 𝑟.

This normal form mimics the original presentation of Strassen’s algorithm from
Subsection 3.1.

Fact 4.2. Strassen’s original 2× 2 algorithm has normal form with 𝑟 = 7.

Definition 4.1 may seem somewhat ad-hoc and geared towards Strassen’s basic
algorithm. This, however, is not the case. Any arithmetic algorithm for matrix
multiplication can be converted into this normal form at comparatively little extra cost.

Theorem 4.3. Suppose there exists an arithmetic algorithm for matrix multiplication
that has runtime 𝑇 . Then, there is a normal form algorithm of size 𝑟 = 2𝑇 .

The proof of this statement is somewhat pedantic and we refer to, for instance,
Yuval Filmus’ lecture notes for details. The key idea is that matrix multiplication has a
rich bi-linear structure: the final output must be linear in the entries of 𝑋 and linear
in the entries of 𝑌 . This restriction alone imposes severe constraints on the arithmetic

1Typically, the algebraic complexity model also allows for division. However, division does not
feature in our algorithms for matrix multiplication and behaves somewhat differently in the algorithmic
analysis. This is why we choose to omit it here.

6

expressions that can occur throughout the course of a general arithmetic algorithm. For
instance, no polynomials of order three (or higher) can feature in the final expression.
Should the algorithm compute a third order polynomial at any step, this must cancel out
again at a later time and we can safely ignore it. Elementary arguments like this allow
to considerably trim the arithmetic representation of a general matrix multiplication
algorithm. Subsequently, this allows for a conversion into normal form at relatively
little extra cost.

4.2 Dominance of multiplications in the arithmetic complexity model

The following statement provides a rigorous connection between the size 𝑟 of a matrix
multiplication algorithm in normal form and the associated runtime (measured in the
arithmetic complexity model).

Theorem 4.4. Suppose there is an 𝑞 ∈ N such that there exists a normal form algorithm
that multiplies two 𝑞 × 𝑞 matrices and has size 𝑟 = 𝑞𝛼. Then, the exponent of matrix
multiplication obeys 𝜔 ≤ 𝛼.

Theorem 3.1 is an immediate consequence of this general result. Strassen’s basic
algorithm meets the requirements of this statement for 𝑞 = 2 and 𝑟 = 7 = 2log2(7).
Applying it ensures,

𝜔 ≤ log2(7) ≃ 2.807.

Proof of Theorem 4.4. We follow the divide and conquer approach sketched for Strassen’s
algorithm We can recursively extend an algorithm for 𝑞 × 𝑞 matrix multiplication to an
algorithm for multiplying two 𝑞𝑘 × 𝑞𝑘 matrices. Let us denote the associated runtime
by 𝑇 (𝑘). We will establish the claim by induction over 𝑘. The assumption 𝑇 (1) = 𝑞𝛼

establishes the base case. For the induction step, we bound 𝑇 (𝑘 + 1) in terms of 𝑇 (𝑘)
and additional dimension-dependent factors.

Divide and conquer allows us to reduce matrix multiplication of 𝑞𝑘+1×𝑞𝑘+1 matrices
to a sequence of in total 𝑟 smaller matrix multiplications. To do this, we divide 𝑋 and
𝑌 into 𝑞2 blocks of size 𝑞𝑘 × 𝑞𝑘 each. We then apply the algorithm to compute the
matrix product block-wise. The normal form assumption ensures, that this involves
exactly 𝑟 linear combinations of sub-blocks 𝑋𝑖

𝑗 and 𝑟 linear combinations of sub-blocks
𝑌 𝑖

𝑗 . Moreover, let us assume for simplicity that each linear combination only involves
a constant number of blocks2 (this is true for Strassen’s algorithm). Since 𝑋𝑖

𝑗 and
𝑌 𝑖

𝑗 have size 𝑞𝑘 × 𝑞𝑘, computing each linear combination takes at most 𝑐(𝑞𝑘)2 = 𝑐𝑞2𝑘

arithmetic operations. The normal form ensures that we need to compute exactly 𝑟
linear combinations for sub-blocks of 𝑋 and 𝑌 each. The total arithmetic cost of
pre-processing is therefore bounded by

𝑇pre(𝑘 + 1) ≤ 2𝑐𝑟𝑞2𝑘.

2A more involved argument allows for by-passing this simplifying assumption, but somewhat obscures
the main conceptual ideas.

7

Next, we multiply these linear combinations using the normal form algorithm for 𝑞𝑘× 𝑞𝑘

matrices. The induction hypothesis asserts that this step requires

𝑇mult(𝑘 + 1) = 𝑟𝑇 (𝑘)

arithmetic operations. Finally, we compute all 𝑞2 blocks of the target matrix 𝑍 = 𝑋𝑌 :

𝑇comb(𝑘 + 1) ≤ 𝑞2 × 𝑐′(𝑞𝑘)2 = 𝑐′𝑞2𝑞2𝑘.

Adding all these individual runtime bounds results in the following bound on the overall
runtime:

𝑇 (𝑘 + 1) ≤ 𝑟𝑇 (𝑘) +
(︁
2𝑐𝑟 + 𝑐′𝑞2

)︁
𝑞2𝑘 = 𝑞𝛼𝑇 (𝑑) +

(︁
2𝑐𝑞𝛼 + 𝑐′𝑞2

)︁
𝑞2𝑘.

Finally, recall the lower bound on the minimal cost of matrix multiplication from (2):
multiplying two 𝑞𝑘 × 𝑞𝑘 matrices requires more than 𝑞2𝑘 arithmetic operations. Applied
to the problem at hand, this ensures 𝛼 > 2 and we may further simplify the inductive
runtime bound:

𝑇 (𝑘 + 1) ≤ 𝑞𝛼
(︁
𝑇 (𝑘) + 𝐶𝑞2𝑘

)︁
.

Since 𝛼 > 2, 𝑇 (𝑘) asymptotically dominates 𝐶𝑞2𝑘 for any value of the constant 𝐶. In
turn, the asymptotic solution to this implicit recurrence is

𝑇 (𝑘) = 𝒪
(︁
𝑞𝛼𝑘

)︁
= 𝒪

(︁(︁
𝑞𝑘
)︁𝛼)︁

.

In terms of the matrix size 𝑛 = 𝑞𝑘, this is 𝑇 (𝑘) = 𝒪(𝑛𝛼) and provides an upper bound
on the exponent of matrix multiplication.

Lecture 12: Tensorial aspects of matrix multiplication

Scribe: Richard Kueng

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
May 01, 2019

1 Agenda and Outline
1. Matrix multiplication as a tensor
2. Connections between tensor rank and the exponent of matrix multiplication
3. Schönhage’s approach
4. Current records and a rough sketch of the laser method

Last lecture was devoted to a detailed analysis of Strassen’s algorithm for fast
matrix multiplication. Today, we will re-visit this idea and expand upon it using tensor
methods. This alternative point of view has led to spectacular improvements in the
fundamental algorithmic cost associated with matrix multiplication. These speed-ups
are general, i.e. they do not depend on advantageous matrix structure, like sparsity.
Since matrix multiplication is the dominant subroutine in numerical linear algebra –
and, by extension, data analysis – results of this type are of great relevance to many
scientific communities.

Naively, one would expect that the arithmetic cost of multiplying two 𝑛 × 𝑛 matrices
is 𝒪(𝑛3). This would imply that the exponent of matrix multiplication is 𝜔 = 3. Since
Strassen’s discovery in 1969, many researches believe that the true cost of matrix
multiplication is “almost” linear in the problem size, i.e. the exponent obeys 𝜔 = 2 + 𝜀,
where 𝜀 > 0 is small. The current record in this direction is

𝒪(𝑛𝜔) where 𝜔 ≤ 2.3728639

and was established by Le Gall in 2014. Subsequent work by Ambainis, Fimus and
Le Gall highlights that the potential of the underlying approach is almost exhausted:
𝜔 = 2.3725 cannot be overcome by incremental improvements of current techniques.
Scientifically, this is an exciting state of the art: Further improvements seem to require
truly novel ideas.

2 Matrix multiplication as a tensor
We will restrict our attention to real-valued matrix multiplication. Fix 𝑋 ∈ R𝑛×𝑚,
as well as 𝑌 ∈ R𝑚×𝑝 and denote their entries by 𝑋𝑖

𝑗 (entry in the 𝑖-th row and 𝑗-th
column) and 𝑌 𝑗

𝑘 (entry in the 𝑗-th row and 𝑘-th column), respectively. Then, the product
𝑍 = 𝑋𝑌 is a 𝑛 × 𝑝 matrix whose entries are defined by the matrix multiplication rule:

𝑍𝑖
𝑘 =

𝑚∑︁

𝑗=1
𝑋𝑖

𝑗𝑌 𝑗
𝑘 for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑝.

2

Matrix multiplication can be regarded as the following bilinear map:

R𝑛×𝑚 × R𝑚×𝑝 →R𝑛×𝑝,

(𝑋, 𝑌) ↦→𝑍 = 𝑋𝑌 .

Indeed, it is easy to check that this map is linear in both inputs. Next, note that the
output space R𝑛×𝑝 is a linear vector space with (finite) dimension 𝑛𝑝. We can endow it
with the Frobenius inner product (𝑍1, 𝑍2) = tr

(︁
𝑍𝑇

1 𝑍2
)︁
. This inner product establishes

a one-to-one relation (isomorphism) between R𝑛×𝑝 and its dual space (R𝑛×𝑝)* ≃ R𝑛×𝑝 –
the space of all linear functionals on R𝑛×𝑝:

𝜙(𝑍) = (Φ, 𝑍) for some Φ ∈ R𝑛×𝑝.

Dualizing the image space allows us to convert matrix multiplication into a tri-linear
form:

R𝑛×𝑚 × R𝑚×𝑝 × (︀
R𝑛×𝑝)︀* →R,

(𝑋, 𝑌 , 𝑍*) ↦→(𝑍*, 𝑋𝑌) = tr(𝑍𝑋𝑌) = tr(𝑋𝑌 𝑍).

The space of tri-linear forms is the canonical dual space of order three tensor products.
This correspondence allows us to associate matrix multiplication with a tensor. This
tensor becomes concrete if we choose bases for the individual matrix spaces (viewed
as finite dimensional vector spaces). Denote the standard basis of R𝑛×𝑚 by 𝑥𝑖

𝑗 , the
standard basis of R𝑚×𝑝 by 𝑦𝑗

𝑘 and let 𝑧𝑘
𝑖 be the standard basis of R𝑝×𝑛. Then,

⟨𝑛, 𝑚, 𝑝⟩ =
𝑛∑︁

𝑖=1

𝑚∑︁

𝑗=1

𝑝∑︁

𝑘=1
𝑥𝑖

𝑗 ⊗ 𝑦𝑗
𝑘 ⊗ 𝑧𝑘

𝑖 (1)

is the matrix multiplication tensor. It has a very symmetric structure, see Figure 1.
It is wortwhile to underline this correspondence with a more concrete calculation.

For 𝐴 ∈ R𝑛×𝑚, 𝐵 ∈ R𝑚×𝑝 and 𝐶 ∈ R𝑝×𝑛, we obtain

(⟨𝑛, 𝑚, 𝑝⟩, 𝐴 ⊗ 𝐵 ⊗ 𝐶) =
𝑛∑︁

𝑖=1

𝑚∑︁

𝑗=1

𝑝∑︁

𝑘=1

(︁
𝑥𝑖

𝑗 , 𝐴
)︁(︁

𝑦𝑗
𝑘, 𝐵

)︁(︁
𝑧𝑘

𝑖, 𝑍
)︁

=
∑︁

𝑖,𝑗,𝑘

𝐴𝑖
𝑗𝐵𝑗

𝑘𝑍𝑘
𝑖 = tr(𝐴𝐵𝐶).

Specifying 𝐶 = (𝑒𝑖𝑒𝑘)𝑇 allows us to read off the (𝑖, 𝑘)-th entry of the matrix product
𝐴𝐵 ∈ R𝑛×𝑝:

(︁
⟨𝑛, 𝑚, 𝑝⟩, 𝐴 ⊗ 𝐵 ⊗ (𝑒𝑖𝑒𝑘)𝑇

)︁
= tr

(︁
𝐴𝐵(𝑒𝑖𝑒𝑗)𝑇

)︁
= 𝑒𝑇

𝑖 𝐴𝐵𝑒𝑗

for all 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑘 ≤ 𝑝.
The matrix multiplication tensor (1) is a sum of 𝑛𝑚𝑝 elementary tensor products.

Evaluating the contribution of each elementary tensor to the overall matrix product is

3

Figure 1 Visualization of ⟨2, 2, 2⟩ viewed as a 3-dimensional array in R4 ⊗R4 ⊗R4 ≃ R4×4×4.
The blue boxes indicate an entry of one, while white boxes denote zero entries.

cheap: simply read in the corresponding matrix entries and compute a single product of
three numbers. This suggests that the computational cost is dominated by the number
of rank-one terms that constitute the tensor ⟨𝑛, 𝑚, 𝑝⟩ – in other words: the tensor rank
matters. The decomposition (1) provides an upper bound on the tensor rank:

𝑟(⟨𝑛, 𝑚, 𝑝⟩) ≤ 𝑛𝑚𝑝.

Note that this upper bound is proportional to the number of scalar multiplications that
is required for standard matrix multiplication.

3 Connections between tensor rank and the exponent of matrix mul-
tiplication

3.1 Strassen’s Algorithm from a tensor perspective
In 1969 Strassen found an way of multiplying two 2 × 2 matrices that gets by with fewer
multiplications than the naive algorithm. We refer to the previous lecture for details.
Here, we emphasize that Strassen’s procedure implies an alternative way of decomposing
the matrix multiplication tensor ⟨2, 2, 2⟩ (1) into elementary rank-one tensors:

⟨2, 2, 2⟩ =
(︁
𝑥1

1 + 𝑥2
2
)︁

⊗
(︁
𝑦1

1 + 𝑦2
2
)︁

⊗
(︁
𝑧1

1 + 𝑧2
2
)︁

+
(︁
𝑥2

1 + 𝑥2
2
)︁

⊗ 𝑦1
1 ⊗

(︁
𝑧2

1 − 𝑧2
2
)︁

+𝑥1
1 ⊗

(︁
𝑦1

2 − 𝑦2
2
)︁

⊗
(︁
𝑧1

2 + 𝑧2
2
)︁

+ 𝑥2
2 ⊗

(︁
𝑦2

1 − 𝑦1
1
)︁

⊗
(︁
𝑧1

1 + 𝑧2
1
)︁

+
(︁
𝑥1

1 + 𝑥1
2
)︁

⊗ 𝑦2
2 ⊗

(︁
−𝑧1

1 + 𝑧1
2
)︁

+
(︁
𝑥2

1 − 𝑥1
1
)︁

⊗
(︁
𝑦1

1 + 𝑦1
2
)︁
𝑧2

2

+
(︁
𝑥1

2 − 𝑥2
2
)︁

⊗
(︁
𝑦2

1 + 𝑦2
2
)︁

⊗ 𝑧1
1 .

This is a sum of only seven elementary tensor products.

Theorem 3.1 (Strassen, 1969). The matrix multiplication tensor ⟨2, 2, 2⟩ ∈ (︀
R2×2)︀⊗3

has rank at most seven (today, we know that it is exactly seven).

4

3.2 Connection between tensor rank and the complexity of matrix multiplication
Strassen’s results suggest a connection between tensor rank and the number of elementary
multiplications required for matrix multiplication. Let 𝜔 be the exponent of matrix
multiplication, i.e. the smallest number such that a (potentially asymptotic) algorithm
exists that multiplies two square matrices using 𝒪(𝑛𝜔) arithmetic operations.

We can combine our new tensor observation with the technical results from last
lecture to derive the following profound correspondence.

Theorem 3.2. The tensor rank 𝑟(⟨𝑛, 𝑛, 𝑛⟩) of any square matrix multiplication tensor
provides an upper bound on the exponent of matrix multiplication:

𝜔 ≤ log𝑛(𝑟(⟨𝑛, 𝑛, 𝑛⟩)) for any 𝑛 ∈ N.

Combining this insight with Theorem 3.1 readily reproduces the main result from
the previous lecture:

𝜔 ≤ log2(𝑟(⟨2, 2, 2⟩)) ≤ log2(7) ≃ 2.807. (2)

Proof sketch of Theorem 3.2. Fix 𝑛 ∈ N and suppose that ⟨𝑛, 𝑛, 𝑛⟩ admits a decom-
position into 𝑟 elementary tensors (i.e. ⟨𝑛, 𝑛, 𝑛⟩ has rank at most 𝑟). Then, we can
decompose the matrix multiplication tensor into a sum of 𝑟 elementary tensor products.
We can then use this decomposition as a guideline to construct an arithmetic algorithm
in normal form that multiplies two 𝑛×𝑛 matrices. The size of this algorithm is governed
by 𝑟, because the number of arithmetic multiplications exactly corresponds to the
number of rank-one tensor contributions. Linear pre- and post-processing steps take
into account that the elementary tensor factors need not be matrix standard basis
elements. We leave a detailed establishment of this correspondence as an instructive
exercise.

Subsequently, we can apply Theorem 4.4 from Lecture 11 to draw a precise connection
to the exponent of matrix multiplication. Recall that this result uses divide and conquer
to extend this arithmetic algorithm to matrix product of size 𝑛𝑘 × 𝑛𝑘 and let 𝑘 go to
infinity. The resulting recurrence establishes the advertised correspondence between the
size of the algorithm 𝑟 and the exponent of matrix multiplication.

3.3 Extension to asymmetric matrix multiplication tensors
Theorem 3.2 hinges on the assumption that the underlying tensor describes matrix
multiplication of square matrices. This structural requirement is essential for the divide
and conquer strategy that establishes the connection between tensor rank and the
exponent of matrix multiplication.

Viewed from this angle, the tensor rank is somewhat more flexible. There are certain
symmetrization operations on tensors that do not increase the tensor rank. Suppose
that we have established a non-trivial bound on the rank of ⟨𝑛, 𝑚, 𝑝⟩. We can then
“symmetrize” the tensor to effectively convert ⟨𝑛, 𝑚, 𝑝⟩ into ⟨𝑛𝑚𝑝, 𝑛𝑚𝑝, 𝑛𝑚𝑝⟩ – a square
matrix multiplication – while simultaneously maintaining key aspects of the original
rank bound. This is the general idea behind a proof of the following extension of
Theorem 3.2.

5

Theorem 3.3. The tensor rank of a general matrix multiplication tensor provides an
upper bound on the exponent of matrix multiplication:

𝜔 ≤ 3 log𝑛𝑚𝑝(𝑟(⟨𝑛, 𝑚, 𝑝⟩)).
Proof. Let 𝑇 = ∑︀

𝑖,𝑗,𝑘 𝑇𝑖𝑗𝑘𝑎𝑖 ⊗ 𝑏𝑗 ⊗ 𝑐𝑘 be a general order-three tensor. Define the
rotations

𝑇 𝐶 =
∑︁

𝑖,𝑗,𝑘

𝑇𝑖𝑗𝑘𝑦𝑗 ⊗ 𝑧𝑘 ⊗ 𝑥𝑖 and 𝑇 𝐶2 =
∑︁

𝑖,𝑗,𝑘

𝑇𝑖𝑗𝑘𝑧𝑘 ⊗ 𝑥𝑖 ⊗ 𝑦𝑗 .

This operation extends the notion of transposition to higher order tensors. It is easy to
check that rotations do not affect the tensor rank. Next, note that we can also form the
tensor product of two order-three tensors. Formally this results in a tensor of order six.
The tensor rank is sub-multiplicative under tensoring: 𝑟(𝑇 ⊗ 𝑇 ′) ≤ 𝑟(𝑇)𝑟(𝑇 ′).

By combining these operations, we can use 𝑟 = rank(⟨𝑛, 𝑚, 𝑝⟩) to bound the tensor
rank of ⟨𝑛𝑚𝑝, 𝑛𝑚𝑝, 𝑛𝑚𝑝⟩:

𝑟(⟨𝑛𝑚𝑝, 𝑛𝑚𝑝, 𝑛𝑚𝑝⟩) =𝑟(⟨𝑛, 𝑚, 𝑝⟩ ⊗ ⟨𝑚, 𝑝, 𝑛⟩ ⊗ ⟨𝑝, 𝑛, 𝑚⟩)
≤𝑟(⟨𝑛, 𝑚, 𝑝⟩)𝑟(⟨𝑚, 𝑝, 𝑛⟩)𝑟(⟨𝑝, 𝑛, 𝑚⟩) = 𝑟(⟨𝑛, 𝑚, 𝑝⟩)3 = 𝑟3.

The last line follows from the fact that ⟨𝑚, 𝑝, 𝑛⟩ and ⟨𝑝, 𝑛, 𝑚⟩ are rotations of ⟨𝑛, 𝑚, 𝑝⟩.
Inserting the bound 𝑟(⟨𝑛𝑚𝑝, 𝑛𝑚𝑝, 𝑛𝑚𝑝⟩) ≤ 𝑟3 into Theorem 3.2 establishes the claim.

3.4 Extension to border rank
Tensors behave very differently from matrices. Recall that certain rank-𝑟 tensors 𝑇 can
be approximated to arbitrary accuracy by tensors that have much smaller rank. The
minimal rank of such approximating tensors is called the border rank 𝑟(𝑇).

At first sight, the conversion of such approximations into accurate numerical algo-
rithms for matrix multiplications seems challenging. However, it turns out that this
is not the case. By adapting the divide and conquer strategy appropriately, one can
show that the approximation accuracy 𝜀 becomes almost irrelevant when extending the
original algorithm recursively to very large matrix dimensions. We content ourselves
with highlighting the result, while referring to the literature for rigorous proofs.
Theorem 3.4. The border rank of a general matrix multiplication tensor provides an
upper bound on the exponent of matrix multiplication:

𝜔 ≤ 3 log𝑛𝑚𝑝(𝑟(⟨𝑛, 𝑚, 𝑝⟩)).

4 Improved bounds on the exponent of matrix multiplication
The previous results may seem somewhat technical. However, Theorem 3.4 forms the
basis of virtually all improvements on the size of 𝜔 since Strassen’s original discovery.

In a nutshell, all of these improvements arise from variants and refinements of
the following basic strategy. Identify (small) numbers 𝑛, 𝑚, 𝑝 ∈ N and a matrix
multiplication tensor ⟨𝑛, 𝑚, 𝑝⟩ whose border rank is as small as possible. Then, use
Theorem 3.4 (or refinements thereof) to convert this insight about border rank into an
upper bound on 𝜔.

6

4.1 Schoenhage’s Theorem
In 1981, Schoenhage established the following upper bound on the exponent of matrix
multiplication:

𝜔 ≤ 2.55. (3)
This substantial improvement over Strassen’s bound (2) is a consequence of Schoenhage’s
identity:

𝑟(⟨4, 1, 4⟩ ⊕ ⟨1, 9, 1⟩) ≤ 17. (4)
Here, ⊕ denotes the direct sum of two matrix multiplication tensors. The direct sum
for tensors is defined in an analogous fashion to the direct sum of two matrices 𝐴 ⊕ 𝐵.
Each tensor factor is decomposed into two orthogonal subspaces and each tensor only
acts on one subset of these subspaces. From an operational perspective, Schoenhage’s
identity bounds the joint border rank of an outer product of two 4-dimensional vectors
and an inner product of two completely unrelated 9-dimensional vectors. This bound is
remarkable, because border ranks of both individual operations are well understood1:

𝑟(⟨4, 1, 4⟩) = 16 and 𝑟(⟨1, 9, 1⟩) = 9.

If we associate the border rank (qualitatively) with the number of multiplications
required to compute outer and inner products, we obtain the following puzzling inter-
pretation of (4): Computing the outer product of two 4-dimensional vectors requires 16
multiplications. At the cost of one additional multiplication, we get an additional inner
product of two completely unrelated 9-dimensional vectors for free!

Schoenhage capitalized on this counter-intuitive tensor phenomenon by extending
Theorem 3.4 to direct sums of different rectangular matrix multiplication tensors.

Theorem 4.1 (Asymptotic sum inequality). The following bound is true for any triple
sequences (𝑛1, 𝑚1, 𝑝1), . . . , (𝑛𝑙, 𝑚𝑙, 𝑝𝑙) ∈ N × N × N

𝑙∑︁

𝑖=1
(𝑛𝑖𝑚𝑖𝑝𝑖)𝜔/3 ≤ 𝑟

(︃
𝑙⨂︁

𝑖=1
⟨𝑛𝑖, 𝑚𝑖, 𝑝𝑖⟩

)︃

Schoenhage’s bound (3) follows from combining the identity (4) with the asymptotic
sum inequality and capitalizing on the insight that the border rank is sub-multiplicative
under taking tensor products. Choose any 𝑁 ∈ N and note that

𝑟
(︁
(⟨4, 1, 4⟩ ⊕ ⟨1, 9, 1⟩)⊗𝑁

)︁
≤ 17𝑁 .

We may interpret this tensor product as a direct sum of many independent matrix
multiplications. Applying the direct sum inequality and subsequently transforming back
to (tensor) products yields

17𝑁 ≥ 𝑟
(︁
(⟨4, 1, 4⟩ ⊕ ⟨1, 9, 1⟩)⊗𝑁

)︁
=
(︁
(4 × 1 × 4)𝜔/3 + (1 × 9 × 1)𝜔/3

)︁𝑁
=
(︁
16𝜔/3 + 9𝜔/3

)︁𝑁

Solving 16𝜔/3 + 9𝜔/3 = 17 for 𝜔establishes Schoenhage’s improvement (3).
1Exact numbers for rank and border rank readily follow from the fact that both operations may be

described by matrices.

7

4.2 A rough sketch of the main idea behind recent top scores
Strassen’s bound on the exponent of matrix multiplication arises from finding a single
square matrix multiplication tensor ⟨2, 2, 2⟩ whose rank is smaller than naively antici-
pated (7 vs. 8). The divide and conquer strategy subsequently allows for converting this
gain in tensor rank into a genuine speed-up for multiplying large square matrices. This
approach can be readily extended to handle non-square matrix multiplication tensors
(Theorem 3.3) and border rank (Theorem 3.4).

Schoenhage deviated from this straightforward approach by considering direct
sums of different matrix multiplication tensors. This affects the relation to matrix
multiplication. The correspondence is more involved and mediated by the direct sum
inequality (Theorem 4.1) which is non-trivial to prove. However, this relaxation allowed
Schoenhage to analyze the border rank of more “exotic” order-three tensors. The
identity (4) achieved a substantially smaller border rank than Strassen’s observation
(and, more generally: any known border rank bound for matrix multiplication tensors).
This resulted in a much better bound: 𝜔 ≤ 2.55.

More recent developments are based on pushing Schoenhage’s idea further: deviate
even more from nice matrix multiplication tensors and search this larger set of target
tensors for specimen that have a particularly small border rank. This is the main idea
behind the so-called laser method. At the basis of this method is a border rank identity
due to Coppersmith and Winograd from 1990. For any 𝑞 ∈ N,

𝑟
(︁

⟨1, 1, 𝑞⟩[0,1,1] + ⟨𝑞, 1, 1⟩[1,0,1] + ⟨1, 𝑞, 1⟩[1,1,0] + ⟨1, 1, 1⟩[0,0,2] + ⟨1, 1, 1⟩[0,2.0] + ⟨1, 1, 1⟩[2,0,0]
)︁

≤ 𝑞 + 2.

Here ⟨𝑛, 𝑚, 𝑝⟩[𝐼,𝐽,𝐾] denotes a matrix multiplication tensor equivalent to ⟨𝑛, 𝑚, 𝑝⟩, but
whose support is restricted to a certain subset of matrix entries. The super-script
indicates which subset of matrix entries is affected by the multiplication tensor. After
flattening the matrix standard basis vectors, these partitions are

𝑥
[0]
0 , 𝑥

[1]
1 , . . . , 𝑥[𝑞]

𝑞 , 𝑥
[1]
𝑞+1, 𝑦

[0]
0 , 𝑦

[1]
1 , . . . , 𝑦[𝑞]

𝑞 , 𝑦
[1]
𝑞+1, and 𝑧

[0]
0 , 𝑧

[1]
1 , . . . , 𝑧[𝑞]

𝑞 , 𝑧
[1]
𝑞+1.

Importantly, the Coppersmith and Winograd identity is valid for any 𝑞 ∈ N. However,
it is not directly related to a simple matrix multiplication procedure. Forcing certain
matrix entries to zero, however, allows for reducing the tensor to something that looks
much more like a standard matrix multiplication ⟨𝑛(𝑞), 𝑚(𝑞), 𝑝(𝑞)⟩. Tighter bounds
on 𝜔 follow from identifying zero-out patterns that are as sparse as possible and
nonetheless enforce a nice matrix multiplication structure. Zeroing out can be done for
the original tensor directly (sub-optimal), or for high-order tensor products and direct
sums, respectively. In 2014 Le Gall automated this search for efficient zero-out patterns
in a large search space (vary 𝑞 and the size of the tensor product) using numerical
algorithms based on convex optimization. In doing so, he scored the current record
regarding the asymptotic cost of matrix multiplication:

𝜔 ≤ 2.3728639.

The laser method yields impressive results, but its potential is almost exhausted. In
2015, Ambainis, Filmus and Le Gall proved that it is impossible to go beyond 𝜔 = 2.3725

8

using the Coppersmith-Winograd identity. This no-go result follows from putting the
above ideas into a rigorous framework. Tight bounds on the convergence of 𝜔 to
certain entropy functions can be established. These bounds cut both ways: Lower
bounds establish upper bounds for 𝜔. This is what Le Gall implicitly found in 2014.
Upper bounds limit the capabilities of the entire framework and highlight a veritable
bottleneck.

Lecture 13: The CP decomposition for tensors

Scribe: Richard Kueng

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
May 13, 2019

1 Agenda
1. Practical tools for handling tensors

(a) Tensors as multi-dimensional arrays
(b) Tensor slices
(c) Matriciation

2. Useful (tensor) products and identities
3. The CP decomposition

(a) Motivation
(b) Definition
(c) Computation

2 Practical tools for handling tensors
Today we will focus exclusively on real-valued tensor products of order three. The meth-
ods discussed readily extend to tensors of arbitrary order and may also be generalized
to complex-valued tensors. However, the latter generalization may require some care:
transposition and conjugation are not equivalent for complex vector spaces.

Fix 𝐴 = R𝑑1 , 𝐵 = R𝑑2 and 𝐶 = R𝑑3 and endow each space with the standard basis
𝑒1, . . . , 𝑒𝑑𝑙

, 𝑙 = 1, 2, 3. We consider tensors in the tensor product space 𝐴⊗𝐵 ⊗ 𝐶:

𝑇 =
𝑟∑︁

𝑖=1
𝜆𝑖𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖 𝑎𝑖 ∈ 𝐴, 𝑏𝑖 ∈ 𝐵, 𝑐𝑖 ∈ 𝐶, 𝜆𝑖 ∈ R.

2.1 Bases and inner products

The individual standard bases give rise to an extended standard basis on the tensor
product 𝐴⊗𝐵 ⊗ 𝐶:

𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘 1 ≤ 𝑖 ≤ 𝑑1, 1 ≤ 𝑗 ≤ 𝑑2, 1 ≤ 𝑘 ≤ 𝑑3

The canonical inner products on ⟨·, ·⟩ extend as well. Expand 𝑇 , 𝑇 ′ ∈ 𝐴⊗𝐵 ⊗ 𝐶 with
respect to the extended standard basis

𝑇 =
∑︁

𝑖,𝑗,𝑘

𝑡𝑖𝑗𝑘𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘 and 𝑇 ′ =
∑︁

𝑖,𝑗,𝑘

𝑡′
𝑖𝑗𝑘𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘

2

and set

⟨𝑇 , 𝑇 ′⟩ =
∑︁

𝑖,𝑗,𝑘

∑︁

𝑖′,𝑗′,𝑘′
𝑡𝑖𝑗𝑘𝑡′

𝑖′𝑗′𝑘′⟨𝑒𝑖 ⊗ 𝑒𝑗 ⊗ 𝑒𝑘, 𝑒𝑖′ ⊗ 𝑒𝑗′ ⊗ 𝑒𝑘′⟩

=
∑︁

𝑖,𝑗,𝑘

∑︁

𝑖′,𝑗′,𝑘′
𝑡𝑖𝑗𝑘𝑡′

𝑖′𝑗′𝑘′⟨𝑒𝑖, 𝑒𝑖′⟩⟨𝑒𝑗 , 𝑒𝑗′⟩⟨𝑒𝑘, 𝑒𝑘′⟩

=
∑︁

𝑖,𝑗,𝑘

𝑡𝑖𝑗𝑘𝑡′
𝑖𝑗𝑘.

This in particular endows 𝐴⊗𝐵 ⊗ 𝐶 with a Euclidean norm:

‖𝑇 ‖22 =
∑︁

𝑖,𝑗,𝑘

𝑡2
𝑖𝑗𝑘. (1)

The extended standard basis representation highlights a useful interpretation of tensors.
They correspond to multi-dimensional arrays:

𝑇 = [𝑡𝑖𝑗𝑘]𝑖,𝑘,𝑘 ∈ 𝐴⊗𝐵 ⊗ 𝐶 = R𝑑1 × R𝑑2 × R𝑑3 .

Vectors are 1-dimensional arrays and matrices are 2-dimensional arrays. Tensors
correspond to higher order arrays. We emphasize, however, that this array interpretation
is manifestly basis-dependent.
Example 2.1 (Movie frames). We can associate a digital picture with a matrix of pixels.
The (𝑖, 𝑗)-th entry of this matrix encodes the color of the pixel that sits at position
1 ≤ 𝑖 ≤ 𝑥max in the 𝑥-direction and 1 ≤ 𝑗 ≤ 𝑦max in the 𝑦-direction. Movies correspond
to a sequence of at least 24 frames per second. Throughout a single scene (no cut),
these individual frames are typically closely related to each other. It therefore makes
sense to represent a movie scene as a 3-dimensional data array, where the third axes
encodes time.

2.2 Tensor fibres and slices
Let 𝑇 ∈ 𝐴⊗ 𝐵 ⊗ 𝐶 be a tensor with basis expansion [𝑡𝑖𝑗𝑘] for 1 ≤ 𝑖 ≤ 𝑑1, 1 ≤ 𝑗 ≤ 𝑑2
and 1 ≤ 𝑘 ≤ 𝑑3.
Definition 2.2 (Fibre). A fibre is the higher order analogue of matrix rows and columns.
For 𝑡 ∈ R𝑑1 ⊗ R𝑑2 ⊗ R𝑑3 , fix 1 ≤ 𝑖0 ≤ 𝑑1, 1 ≤ 𝑗0 ≤ 𝑑2, 1 ≤ 𝑘0 ≤ 𝑑3 and define

𝑡:𝑗0𝑘0 =
𝑑1∑︁

𝑖=1
𝑡𝑖𝑗0𝑘0𝑒𝑖 ∈ 𝐴, 𝑡𝑖0:𝑘0 =

𝑑2∑︁

𝑗=1
𝑡𝑖0𝑗𝑘0𝑒𝑗 ∈ 𝐵, 𝑡𝑖0𝑗0: =

𝑑3∑︁

𝑘=1
𝑡𝑖0𝑗0𝑘𝑒𝑘 ∈ 𝐶.

These vectors are called mode-1, mode-2 and mode-3 fibres, respectively.
Fibres arise from contracting certain indices with fixed standard basis vectors. In

wiring calculus,

𝑡:𝑗0𝑘0

= 𝑡𝑒𝑗0

𝑒𝑘0

, 𝑡𝑖0:𝑘0
= 𝑡

𝑒𝑖0

𝑒𝑘0

and

𝑡𝑖0𝑗0:

= 𝑡

𝑒𝑖0

𝑒𝑗0 .

3

Example 2.3. For matrices (order two tensors) mode-1 fibers are column vectors and
mode-2 fibers are row vectors.

Definition 2.4 (slice). Slices are 2-dimensional sections of a tensor [𝑡𝑖𝑗𝑘] ∈ 𝐴⊗𝐵 ⊗𝐶 and
we treat them as matrices. Fix 1 ≤ 𝑖0 ≤ 𝑑1, 1 ≤ 𝑗0 ≤ 𝑑2, 1 ≤ 𝑘0 ≤ 𝑑3 and define

𝑇𝑖0:: =
∑︁

𝑗,𝑘

𝑡𝑖0𝑗𝑘𝑒𝑗 ⊗ 𝑒𝑘 ≃
∑︁

𝑗,𝑘

𝑡𝑖0𝑗𝑘𝑒𝑗𝑒𝑇
𝑘 ∈ R𝑑2×𝑑3 ,

𝑇:𝑗0: =
∑︁

𝑖,𝑘

𝑡𝑖𝑗0𝑘𝑒𝑖 ⊗ 𝑒𝑘 ≃
∑︁

𝑖,𝑘

𝑡𝑖𝑗0𝑘𝑒𝑖𝑒
𝑇
𝑘 ∈ R𝑑1×𝑑3 ,

𝑇::𝑘0 =
∑︁

𝑖,𝑗

𝑡𝑖𝑗𝑘0𝑒𝑖 ⊗ 𝑒𝑗 ≃
∑︁

𝑖𝑚𝑗

𝑡𝑖𝑗𝑘0𝑒𝑖𝑒
𝑇
𝑗 ∈ R𝑑1×𝑑2 .

Slices arise from contracting one index with a fixed standard basis vector and turning
the remaining order-two tensor into a matrix (bend one index):

𝑇𝑖0:: = 𝑡

𝑒𝑖0

,

𝑇:𝑗0:

= 𝑡𝑒𝑗0 ,

𝑇::𝑘0

= 𝑡

𝑒𝑘0

.

Example 2.5 (the Schur-product). Set 𝑑1 = 𝑑2 = 𝑑3 = 𝑑. Then, the tensor associated with
the Hadamard product 𝑥 ⊙ 𝑦 is ℎ = ∑︀𝑑

𝑖=1 𝑒𝑖 ⊗ 𝑒𝑖 ⊗ 𝑒𝑖. This corresponds to a “data
cube” with ones on the super-diagonal and zeros everywhere else.

Example 2.6 (Matrix multiplication for 2× 2 matrices). Associate the standard matrix basis
for 2 × 2 matrices with four standard basis vectors: 𝑒𝑖𝑒

𝑇
𝑗 → 𝑒𝑖 ⊗ 𝑒𝑗 = 𝑒(𝑖,𝑗). Then,

matrix multiplication can be viewed as a tensor in R4 × R4 × R4:

⟨2, 2, 2⟩ =
2∑︁

𝑖,𝑗,𝑘=1
𝑒(𝑖,𝑗) ⊗ 𝑒(𝑗,𝑘) ⊗ 𝑒(𝑘,𝑖).

The associated data cube is depicted in Figure 1.

2.3 Matricization: transforming tensors into a matrix

Matricization, also knownas unfolding or flattening, is the process of reordering the
elements of a tensor into a matrix. It is easiest understood in wiring notation. Consider
an order three tensor

𝑇 = 𝑇 ∈ 𝐴⊗𝐵 ⊗ 𝐶

There is an easy standard procedure to convert this tensor into a matrix. Leave one
index line unchanged, group the other two together and bend them. For order three

4

Figure 1 Data cube visualization of 2 × 2 matrix multiplication viewed as a tensor in
R4 ⊗ R4 ⊗ R4.

tensors, there are
(︀3

2
)︀

= 3 possible ways to achieve this goal:

𝑇(1)𝐴 𝐵 ⊗ 𝐶 = 𝑇 ,

𝑇(2)𝐵 𝐴⊗ 𝐶 = 𝑇 ,

𝑇(3)𝐶 𝐴⊗𝐵 = 𝑇 .

The subscript indicates which tensor factor remain unchanged. These matriciations are
called mode-𝑘 unfoldings, where 𝑘 refers to the tensor factor that remains unchanged.

Example 2.7. Consider 𝑇 ∈ R3 ⊗ R4 ⊗ R2 ≃ R3×4×2 with frontal slices

𝑇::1 =

⎛
⎜⎝

1 4 7 10
2 5 8 11
3 6 9 12

⎞
⎟⎠, 𝑇::2 =

⎛
⎜⎝

13 16 19 22
14 17 20 23
15 18 21 24

⎞
⎟⎠.

5

Then,

𝑇(1) =

⎛
⎜⎝

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

⎞
⎟⎠ ∈ R3×(4×2),

𝑇(2) =

⎛
⎜⎜⎜⎝

1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24

⎞
⎟⎟⎟⎠ ∈ R4×(3×2),

𝑇(3) =
(︃

1 2 3 · · · 11 12
13 14 15 · · · 23 24

)︃
∈ R2×(4×3).

3 Useful product operation on vectors and matrices
3.0.1 Kronecker product

Fix 𝑎 = (𝑎1, . . . , 𝑎𝑑1)𝑇 ∈ R𝑑1 and 𝑏 = (𝑏1, . . . , 𝑏𝑑2)𝑇 ∈ R𝑑2 . We define the Kronecker
product

𝑎⊗ 𝑏 =

⎛
⎜⎝

𝑎1𝑏
...

𝑎𝑑1𝑏

⎞
⎟⎠ ∈ R𝑑1×𝑑2 ≃ R𝑑1 ⊗ R𝑑2 .

This is a concrete realization of the tensor product that has accompanied us throughout
the corse of this lecture. It is basis independent and in wiring notation, we denote it by

𝑎
⊗

𝑏 =
𝑎

𝑏

.

This product operation readily extends to matrices. For 𝐴 ∈ R𝑑1×𝑑2 and 𝐵 ∈ R𝑑3×𝑑4

we set

𝐴⊗𝐵 =

⎛
⎜⎝

𝑎11𝐵 · · · 𝑎1𝑑2𝐵
...

𝑎𝑑11𝐵 · · · 𝑎𝑑1𝑑2𝐵

⎞
⎟⎠ ∈ R(𝑑1×𝑑3)×(𝑑2×𝑑4) ≃ R𝑑1×𝑑2 ⊗ R𝑑3×𝑑4 .

In wiring notation, this corresponds to arranging operators in parallel:

𝐴
⊗

𝐵 =
𝐴

𝐵

.

3.0.2 Hadamard product

The Hadamard product only makes sense for vectors (matrices) with equal dimensions.

6

Fix 𝑎, 𝑏 ∈ R𝑑 and define their entry-wise product:

𝑎⊙ 𝑏 =

⎛
⎜⎝

𝑎1𝑏1
...

𝑎𝑑𝑏𝑑

⎞
⎟⎠ ∈ R𝑑1 .

Note that the coefficients of this vector correspond to a certain (symmetric) sub-selection
of entries in the Kronecker product. We introduce the following wiring “gadget” to
make this explicit:

=
𝑑∑︁

𝑖=1

𝑒𝑖

𝑒𝑖

𝑒𝑖

.

Then,

𝑎⊙ 𝑏 =
𝑎

𝑏

The Hadamard product can be extended to matrices of equal dimension. For 𝐴, 𝐵 ∈
R𝑑1×𝑑2 we define

𝐴⊙𝐵 =

⎛
⎜⎝

𝑎11𝑏11 · · · 𝑎1𝑑2𝑏1𝑑2
...

𝑎𝑑11𝑏𝑑11 · · · 𝑎𝑑1𝑑2𝑏𝑑1𝑑2

⎞
⎟⎠ ∈ R𝑑1×𝑑2 .

Similar to the vector case, this matrix product arises from sub-selecting certain entries
of the Kronecker product 𝐴⊗𝐵. In wiring notation, this sub-selection is achieved by
applying the Hadamard gadget twice:

𝐴⊙𝐵 =
𝐴

𝐵

.

Finally, note that we recover the Hadamard tensor ℎ ∈ R𝑑1⊗R𝑑1⊗R𝑑1 from Example 2.5
by bending the first and third indicex of the Hadamard gadget to the left:

ℎ =
𝑑1∑︁

𝑖=1
𝑒𝑖 ⊗ 𝑒𝑖 ⊗ 𝑒𝑖 = (2)

3.0.3 Khatri-Rao product

Suppose that 𝐴 ∈ R𝑑1×𝑑2 and 𝐵 ∈ R𝑑3×𝑑2 have the same number of columns. Then,
we can define the following matrix product:

𝐴 *𝐵 = [𝑎1 · · ·𝑎𝑑2] * [𝑏1 · · · 𝑏𝑑2] = [𝑎1 ⊗ 𝑏1 · · ·𝑎𝑑2 ⊗ 𝑏𝑑2] ∈ R(𝑑1×𝑑3)×𝑑2 .

7

This is called the Khatri-Rao product. It results from a one-sided application of the
Hadamard gadget.

𝐴*𝐵 =
𝐴

𝐵

This graphical notation underlines the intermediary nature of this product. It is –
in a precise sense – half way between the general Kronecker product and the highly
structured Hadamard product.
3.0.4 Useful identities

Let 𝐴† denote the Moore-Penrose inverse. Then, persistence of the Kronecker product
for operators readily implies

(𝐴⊗𝐵)(𝐶 ⊗𝐷) = 𝐴𝐶 ⊗𝐵𝐷 and (𝐴⊗𝐵)† = 𝐴† ⊗𝐵†.

Although not obvious from the entry-wise definition, the Khatri-Rao product is associa-
tive:

(𝐴 *𝐵) *𝐶 = 𝐴 * (𝐵 *𝐶) =: 𝐴 *𝐵 *𝐶.

This readily follows from the wiring definition and specific features of the Hadamard
gadget: this gadget corresponds to a 3-way Kronecker delta. It is only non-zero if all of
the three indices coincide. Like ordinary Kronecker products, this 3-way generalization
is associative. The wiring formalism also allows for readily establishing the following
useful identity between Khatri-Rao and Hadamard product:

(𝐴 *𝐵)𝑇 (𝐴 *𝐵) =
𝐴𝑇

𝐵𝑇

𝐴

𝐵

= (𝐴𝐴𝑇)⊙ (𝐵𝑇 𝐵).

This identity provides a simple expression for the Moore-Penrose inverse:

(𝐴 *𝐵)† =
(︁
(𝐴𝑇 𝐴)⊙ (𝐵𝑇 𝐵)

)︁†
(𝐴 *𝐵)𝑇 . (3)

4 The CP decomposition
4.1 Recapitulation: minimal rank decompositions
Recall that we may express any tensor in as a sum of rank-one elements. For order
three tensors, we obtain the following decomposition:

𝑡 =
𝑟∑︁

𝑖=1
𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖 ∈ R𝑑1 ⊗ R𝑑2 ⊗ R𝑑3 . (4)

Here 𝑎1, . . . , 𝑎𝑟 ∈ 𝐴, 𝑏1, . . . , 𝑏𝑟 ∈ 𝐵 and 𝑐1, . . . , 𝑐𝑟 ∈ 𝐶. Set 𝐴 = [𝑎1 · · ·𝑎𝑟] ∈ R𝑑1×𝑟,
𝐵 = [𝑏1 · · · 𝑏𝑟] ∈ R𝑑2×𝑟 and 𝐶 = [𝑐1 · · · 𝑐𝑟] ∈ R𝑑3×𝑟. Then, Kolda advocates the
following notation:

𝑡 = [[𝐴, 𝐵, 𝐶]]. (5)

8

The matrices 𝐴, 𝐵 and 𝐶 are called factor matrices. The Hadamard gadget (2) allows
us to convert Kolda’s notation into a simple wiring diagram. Equation (5) is equivalent
to

𝑡 =
𝐴

𝐵

𝐶

.

Factor matrices are closely related to matriciations. For instance,

𝑇(2) =
𝐴

𝐵

𝐶

= 𝐵

𝐴𝑇

𝐶𝑇

= 𝐵(𝐴 *𝐶)𝑇 ,

where we have identified the transpose of the Khatri-Rao product. Similar relation hold
true for other the other mode-𝑘 unfoldings. Each matriciation singles out another factor
matrix on the right:

𝑇(1) = 𝐴(𝐵 *𝐶)𝑇 , 𝑇(2) = 𝐵(𝐴 *𝐶)𝑇 and 𝑇(3) = 𝐶(𝐴 *𝐵)𝑇 . (6)

4.2 CP decomposition

Minimal rank decompositions (4) of tensors closely resemble matrix factorizations.
Indeed, suppose that 𝐴 ∈ R𝑑1×𝑑2 may be decomposed into a product of smaller
matrices: 𝐴 = 𝑉 𝑊 𝑇 , where 𝑉 ∈ R𝑑1×𝑟 and 𝑊 ∈ R𝑑2×𝑟. Then,

vec(𝐴) = 𝐴 = 𝑉 𝑊 𝑇
= 𝑉

𝑊

= 𝑉 ⊗𝑊 vec(I)

The (modified) Hadamard gadget ℎ = ∑︀𝑟
𝑖=1 𝑒𝑖 ⊗ 𝑒𝑖 ⊗ 𝑒𝑖 may be viewed as a natural

extension of the vectorized identity vec(I) = ∑︀𝑟
𝑖=1 𝑒𝑖 ⊗ 𝑒𝑖. One of the most classical

tensor factorizations is based on this correspondence:

Definition 4.1 (CP decompostion). A decomposition (4) of a tensor 𝑡 into a sum of 𝑅
rank-one elements is called a CP decomposition with rank 𝑅.

The name is a synergy of CANDECOMP (canonical decomposition) and PARAFAC
(parallel factors). CP decompositions always exist. Indeed, we have defined the tensor
product space R𝑑1 ⊗ R𝑑2 ⊗ R𝑑3 as the linear hull of all elementary tensor products
𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖. The CP decomposition seeks to achieve the opposite: decompose a general
tensor into a sum of 𝑅 elementary tensor products. However, finding them is in general
very challenging for the following reasons:

9

1. Finding a CP decomposition with rank 𝑅 equal to the tensor rank 𝑟 would
implicitly identify the tensor rank. However, we know that the problem of
determining the rank of a tensor is NP-hard.

2. CP decompositions are unique, but not invariant under linear transformations.
Therefore, we cannot assume that the columns of 𝐴, 𝐵, or 𝐶 are orthogonal.

3. The existence of border rank shows that CP decompositions need not be stable.

At the same time, CP decompositions are highly valuable in concrete applications.
As already pointed out, the name CP is a snythesis of two different names that have a
long history:

1. CANDECOMP was introduced for analyzing multiple similarity/dissimilarity
matrices from a variety of subjects. Simple averaging of all subjects annihilates
different points of view. Example: vowel sound date from different individuals
(mode 1) spoke different vowels (mode 2) and the format (pitch, frequency pattrn)
was measured (mode 3). This point of view was adopted by many research groups
in different fields ranging from chemometrics, neuroscience to telecommunication.

2. PARAFAC was introduced, because tensor methods eliminate ambiguities asso-
ciated with traditional PCA. In contrast to matrices, tensor factorizations are
almost always unique.

4.3 An alternating least squares algorithm for approximating the CP decomposi-
tion

As already pointed out, there are complexity-theoretic obstructions towards computing
the CP decomposition exactly. This however, does not mean that we cannot come up
with approximation heuristics. Here, we present one such heuristic that is based on
alternating least squares. It is designed to compute individual iterations as quickly as
possible. The hope is then that many simple iterations ultimately converge to something
useful.

The concrete goal is to compute an accurate rank-𝑅 approximation of a given tensor
𝑡 ∈ R𝑑1 ⊗ R𝑑2 ⊗ R𝑑3 . The extended inner product provides us with a natural distance
measure – the extended Euclidean norm (1) – that quantifies approximation accuracy.
Moreover, we shall consider the approximation rank 𝑅 as a free input parameter to our
algorithm. For given 𝑅, we aim to solve

minimize ‖𝑡− [[𝐴, 𝐵, 𝐶]]‖ subject to 𝐴 ∈ R𝑑1×𝑅, 𝐵 ∈ R𝑑2×𝑅, 𝐶 ∈ R𝑑3×𝑟.

Solving this problem requires simultaneous optimization over three different matrix
variables. This is typically a very challenging problem. Alternating least squares (ALS)
is a popular approach for iteratively solving such problems heuristically. First, fix 𝐵, 𝐶,
solve for 𝐴 and update 𝐴 to be the optimal solution of the single-variable problem.
Then, fix 𝐴, 𝐶, solve for 𝐵 and update accordingly. Keeping 𝐴, 𝐵 fixed and updating
𝐶 in a similar fashion completes one ALS cycle. This cycle is repeated many times until
some stopping condition is reached. Prominent stopping conditions are (i) very little

10

input : tensor 𝑡 ∈ R𝑑1 ⊗ R𝑑2 ⊗ R𝑑3 , rank 𝑅
Initialize 𝐴 ∈ R𝑑1×𝑅, 𝐵 ∈ R𝑑2×𝑅, 𝐶 ∈ R𝑑3×𝑅, 𝑁max (max nr. of iterations);
while 𝑖 < 𝑁 do

𝐴← 𝑇(1)(𝐵 *𝐶)
(︁
𝐵𝑇 𝐵 ⊙𝐶𝑇 𝐶

)︁†
;

𝐵 ← 𝑇(2)(𝐴 *𝐶)
(︁
𝐴𝑇 𝐴⊙𝐶𝑇 𝐶

)︁†
;

𝐶 ← 𝑇(3)(𝐴 *𝐵)
(︁
𝐴𝑇 𝐴⊙𝐵𝑇 𝐵

)︁†
;

(Break loop if a certain stopping condition is reached);
𝑖← 𝑖 + 1;

end
output : matrix factors 𝐴 ∈ R𝑑1×𝑅, 𝐵 ∈ R𝑑2×𝑅, 𝐶𝑑3×𝑅

Algorithm 1: Alternating least squares (ALS) algorithm for approximating CP
decompositions.

improvement in the objective function, (ii) very little change in the factor matrices, (iii)
the objective value (norm to target tensor) is close to zero, or (iv) a pre-fixed maximum
number of cycle repetitions is exhausted.

We emphasize that initialization also plays a very important role in such ALS-type
algorithms. The initial choices of 𝐴, 𝐵 and 𝐶 may affect the performance considerably.
A naive initialization would correspond to populate all three matrices with random
entries. This often works well in practice, because random initialization may avoid “hard
problem instances”. Smarter initialization techniques use spectral information about
matriciations of 𝑡 to reduce the distance of the initialization to the final target tensor.
This may limit the number of cycle repetitions required for convergence. However, we
emphasize that we have barely scratched the surface here.

Algorithm 1 summarizes pseudo-code for an ALS approach to computing CP decom-
positions. The individual updates are optimized to require as few resources as possible.
To understand their working, let us focus on the first sub-iteration. Fix 𝐵, 𝐶 and
optimize the norm distance over 𝐴 ∈ R𝑑1×𝑅. The Euclidean norm has an interesting
feature. It is invariant under re-arranging tensor indices. This in particular includes
matricitations. This together with the first identity in Eq. (6) allows for isolating the
contribution of 𝐴 to the norm difference:

‖𝑡− [[𝐴, 𝐵, 𝐶]]‖ =
⃦⃦
⃦𝑇(1) −𝐴(𝐵 *𝐶)𝑇

⃦⃦
⃦.

Since 𝐵, 𝐶 and 𝑇(1) are fixed, minimizing this (Frobenius) norm distance reduces to a
simple least squares problem. The optimal solution is well-known and corresponds to

𝐴♯ = 𝑇(1)
(︁
(𝐵0 *𝐶)𝑇

)︁†
,

where † denotes the Moore-Penrose pseudo-inverse. Computing this pseudo-inverse
is the most expensive step in the update 𝐴 → 𝐴♯. The cost scales polynomially in

11

the dimension 𝑑2𝑑3𝑅 of 𝐵 *𝐶. The identity (3) allows for significantly reducing this
dimension:

𝐴♯ = 𝑇(1)(𝐵 *𝐶)
(︁
𝐵𝑇 𝐵 ⊙𝐶𝑇 𝑇

)︁†
. (7)

This re-formulation only requires computing the pseudo-inverse of 𝐵𝑇 𝐵 ⊙𝐶𝑇 𝐶 – a
𝑅×𝑅 matrix.

After we have updated 𝐴 according to (7), we move on to optimizing over 𝐵
exclusively. Choosing a different matriciation – 𝑇(2) in this case – allows for isolation 𝐵
and repeating the least squares arguments from before. A similar analysis extends to
the optimization over 𝐶 exclusively, where the right matriciation is 𝑇(3).

Lecture 14: The Tucker decomposition for tensors

Scribe: Richard Kueng

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
May 15, 2019

1 Agenda
1. Prelude: different views on matrix factorization
2. The Tucker decomposition

(a) Definition and Motivation
(b) Algorithms
(c) Specifications

2 Prelude: different views on matrix factorization
Matrix factorizations are an indispensable tool for both analytical and numerical linear
algebra. The key idea is to decompose a large matrix into smaller constituents that are
easier to analyze and work with. As such, matrix factorizations feature prominently in
data analysis.

In a nutshell, there are two different views on matrix factorization that are somewhat
dual to each other. What is more, both approaches are ultimately based on the singular
value decomposition and therefore yield comparable results. This equivalence, however
is broken for higher order tensors.

One view gives rise to the CP decomposition, while the other motivatates the Tucker
decomposition.
2.1 Independent component analysis (ICA)
Let R𝑛×𝑚 denote the linear space of real-valued 𝑛×𝑚 matrices. This space is the linear
hull of all outer products (rank-one matrices):

R𝑛×𝑚 =
{︃

𝑟∑︁

𝑖=1
𝑥𝑖𝑦

𝑇
𝑖 : 𝑥1, . . . , 𝑥𝑟 ∈ R𝑛, 𝑦1, . . . , 𝑦𝑟 ∈ R𝑚, 𝑟 ∈ N

}︃
.

Outer products are the elementary elements that generate the matrix space. A natural
approach to matrix factorization is to find the best elementary fit to a given matrix,
remove its contribution and iterate. More precisely, fix 𝑋 ∈ R𝑛×𝑚 and execute the
following iterative procedure.

Firstly, identify the best rank-one fit to 𝑋. This can be obtained my maximizing
the Rayleigh quotient:

maximize
𝑎∈R𝑛,𝑏∈R𝑚

⟨𝑎, 𝑋𝑏⟩
‖𝑎‖‖𝑏‖ (1)

Secondly, 𝑋(1) = 𝜆♯𝑎♯𝑏
𝑇
♯ and remove this leading contribution from 𝑋. I.e. update

𝑋 ↦→𝑋 −𝑋(1). This step is often called deflation.

2

This two-step procedure can be repeated 𝑟 times to obtain a sequence of outer
products that approximates 𝑋 ever more accurately:

𝑋 ≃
𝑟∑︁

𝑖=1
𝑋(𝑖) =

𝑟∑︁

𝑖=1
𝜆𝑖𝑎𝑖𝑏

𝑇
𝑖 .

As 𝑟 increases, this approximation becomes more accurate and exactly reproduces 𝑋
once 𝑟 = rank(𝑋). In many concrete applications, 𝑟 ≪ min{𝑛, 𝑚} already provides an
excelent approximation.

However, the order of contributions is also important. By construction, Importantly,
the relevance of each contribution diminishes with each iteration: 𝜆𝑖 ≥ 𝜆𝑖+1 for all
𝑖 = 1, . . . , 𝑟 − 1.

Vectorization provides a straightforward mapping of this procedure to order-two
tensors:

vec(𝑋) ≃
𝑟∑︁

𝑖=1
𝜆𝑖𝑎𝑖 ⊗ 𝑏𝑖 ∈ R𝑛 ⊗ R𝑚.

We approximate 𝑡 = vec(𝑋) ∈ R𝑛 ⊗ R𝑚 by a sequence of elementary tensor products
𝜆𝑖𝑎𝑖 ⊗ 𝑏𝑖. The CP decomposition is a natural extension of this factorization approach
to higher order tensors. For instance,

𝑡 ≃
𝑟∑︁

𝑖=1
𝜆𝑖𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖 ∈ R𝑛 ⊗ R𝑚 ⊗ R𝑙,

where 𝑎1, . . . , 𝑎𝑟 ∈ R𝑛, 𝑏1, . . . , 𝑏𝑟 ∈ R𝑚, 𝑐1, . . . , 𝑐𝑟 ∈ R𝑙 and 𝜆1, . . . , 𝜆𝑟 ∈ R.
2.2 Principal component analysis (PCA)
Independent component analysis treats R𝑛×𝑚 as a vector space. It decomposes 𝑋 into a
linear combination of distinguished elements, namely rank-one matrices. However, R𝑛×𝑚

is more than just a vector space. We can also multiply matrices. This is the starting
point for another approach to matrix factorization: approximate 𝑋 by a product of
(smaller) matrices:

𝑋 ≃ 𝑉 𝑊 𝑇 where 𝑉 ∈ R𝑛×𝑟, 𝑊 ∈ R𝑚×𝑟, 𝐶 ∈ R𝑟×𝑟. (2)

Ideally, one chooses 𝑟 ≪ min{𝑛, 𝑚} to expose latent structures.
This approach has a long and proud tradition in statistics that dates back to Pearson

in 1901. It is called principal component analysis. A data matrix 𝑋 is decomposed into
factors – the columns of 𝑉 – and loadings – the columns of 𝑊 . The factors isolate core
features of the data, while the loadings highlight how these core features need to be
combined.

Concrete approximations require a notion of distance on R𝑛×𝑚. Typically, one
chooses the Frobenius norm. PCA then corresponds to choosing a value for 𝑟 and
solving the following optimization problem:

minimize
𝑉 ∈R𝑛×𝑟, 𝑊 ∈R𝑛×𝑟

⃦⃦
⃦𝑋 − 𝑉 𝑊 𝑇

⃦⃦
⃦.

3

In contrast to the previous factorization approach, it is not so clear how to extend this
method to tensors. Tensor product spaces do not have a natural algebra structure – it
is not clear how to multiply them.

The following re-interpretation of PCA helps to overcome this challenge, but is also
insightful by itself. Matrices can be interpreted as either elements of a vector space, or
concrete realizations of a linear operator:

𝑋 ∈ R𝑛×𝑚 vs. 𝑋 ∈ ℒ(R𝑛,R𝑚).

We can interpret 𝑉 in Eq. (2) as a linear operator from a small space R𝑟 to a much
larger space R𝑛. In contrast, we treat 𝑊 𝑇 as an element of the (small) vector space
R𝑚×𝑟. This interpretation can be readily extended to order-two tensors:

vec(𝑋) = 𝐴⊗ I⏟ ⏞
blow-up

vec(𝑉)⏟ ⏞
tensor

.

The core information of a concrete data table is contained in a small matrix – the
loadings which determine interactions among final rows and columns. The factors
correspond to a blow-up that embed these interactions in a much larger column space.
2.3 Relation between both approaches
For matrices, ICA and PCA are closely related. In fact it is useful to view them as
primal and dual approaches to solve the same problem. This close relation is due to the
singular value decomposition (SVD) – the royal emperor of all matrix factorizations.
This single decomposition solves both ICA and PCA at once. Fix 𝑋 ∈ R𝑛×𝑚 and apply
a SVD:

𝑋 = 𝑈Σ𝑉 𝑇 =
rank(𝑋)∑︁

𝑖=1
𝜎𝑖𝑢𝑖𝑣

𝑇
𝑖 .

Assume that the singular values are arranged in non-increasing order and the vectors
𝑢𝑖 ∈ R𝑛, 𝑣𝑖 ∈ R𝑚 are orthogonal and normalized. Then,

⟨𝑢1, 𝑋𝑣1⟩ =
rank(𝑋)∑︁

𝑖=1
𝜎𝑖⟨𝑢1, 𝑢𝑖⟩⟨𝑣𝑖, 𝑣1⟩ = 𝜎1.

which is the maximum Rayleigh quotient value achievable:

⟨𝑎, 𝑋𝑏⟩
‖𝑎‖‖𝑏‖ ≤ ‖𝑋‖∞ = 𝜎1.

This highlights that the rank-one matrix 𝜎1𝑢1𝑣𝑇
1 provides the best rank-one approxima-

tion to 𝑋. Subtracting this contribution and iterating the procedure reveals additional
SVD triples (𝜎𝑖, 𝑢𝑖, 𝑣𝑖). Their order is dictated by the size of the singular values. For 𝑟
iterations, we obtain the following approximation accuracy:

‖𝑋 −
𝑟∑︁

𝑖=1
𝜎𝑖𝑢𝑖𝑣

𝑇
𝑖 ‖2 =

rank(𝑋)∑︁

𝑖=𝑟+1
𝜎2

𝑖 .

4

The SVD also provides an optimal solution for PCA. Set 𝑉♯ = [𝜎1𝑢1, . . . , 𝜎𝑟𝑢𝑟] ∈ R𝑛×𝑟

and 𝑊♯ = [𝑣1, . . . , 𝑣𝑟]. Then,

‖𝑋 − 𝑉♯𝑊
𝑇
♯ ‖2 = ‖𝑋 −

𝑟∑︁

𝑖=1
𝜎𝑖𝑢𝑖𝑣

𝑇
𝑖 ‖2 =

rank(𝑋)∑︁

𝑖=𝑟+1
𝜎2

𝑖 .

Not only, does this approximation accuracy exactly coincide with ICA-value. The
Eckart-Young-Mirski Theorem asserts that this value is optimal and cannot be further
improved.

This equivalence breaks down for tensors of higher order. To illustrate the main
problem, let us consider the following seemingly trivial identity:

𝑟∑︁

𝑖=1
𝜎𝑖𝑢𝑖 ⊗ 𝑣𝑖 =𝑈Σ⊗ 𝑉

𝑟∑︁

𝑖=1
𝑒𝑖 ⊗ 𝑒𝑖 = 𝑈Σ⊗ 𝑉 vec(I) = vec

(︁
𝑈Σ𝑉 𝑇

)︁
= vec

(︁
𝑉♯𝑊

𝑇
♯

)︁
.

The left hand side is the (vectorized) ICA, while the right hand side is the (vectorized)
PCA. The steps in between, however, break down for tensors of higher order. We
cannot move around operators for free anymore. Consequently, the two approaches
obtain a rather different flavor and give rise to the oldest and most classical tensor
decompositions:

1. ICA gives rise to the CP decompostion – the topic of Lecture 13.
2. PCA gives rise to the Tucker decomposition – today’s topic.

3 The Tucker decomposition
Once more we shall focus our attention of order three tensors: 𝑡 ∈ R𝑑1 ⊗ R𝑑2 ⊗ R𝑑3 . A
generalization to higher orders is straightforward, but becomes more involved notation-
wise.

The key idea behind the Tucker decomposition is to view 𝑡 as a blow-up of another
order-three tensor that lives in a much smaller space.

Definition 3.1. A tensor 𝑡 ∈ R𝑑1 ⊗ R𝑑2 ⊗ R𝑑3 admits a Tucker decomposition of local
dimensions (𝑅1, 𝑅2, 𝑅3) if there are matrices 𝐴 ∈ R𝑑1×𝑅1 , 𝐵 ∈ R𝑑2×𝑅2 , 𝐶 ∈ R𝑑3×𝑅3

and a tensor 𝑔 ∈ R𝑅1 ⊗ R𝑅2 ⊗ R𝑅3 such that

𝑡 = 𝐴⊗𝐵 ⊗𝐶𝑔.

This representation becomes interesting if the local dimensions are much smaller
than the ambient dimensions: 𝑟𝑖 ≪ 𝑑𝑖 for 𝑖 = 1, 2, 3. In this case, the core tensor 𝑔 is
much smaller than the original tensor 𝑡. The latter is recovered by blowing up 𝑔 in
different directions. Importantly, these blow-ups are assumed to be independent:

𝐴⊗𝐵 ⊗𝐶 ∈ ℒ
(︁
R𝑅1 ,R𝑑1

)︁
⊗ ℒ

(︁
R𝑅2 ,R𝑑2

)︁
⊗ ℒ

(︁
R𝑅3 ,R𝑑3

)︁
.

5

It is instructive, to expand the Tucker decomposition further. Write 𝐴 = [𝑎1, . . . , 𝑎𝑅1],
𝐵 = [𝑏1, . . . , 𝑏𝑅2], 𝐶 = [𝑐1, . . . , 𝑐𝑅3] and interpret 𝑔 ∈ R𝑅1 ⊗ R𝑅2 ⊗ R𝑅3 as a ternary
array: [𝑔𝑖,𝑗,𝑘] ∈ R𝑅1×𝑅2×𝑅3 . Then,

𝑡 =
𝑅1∑︁

𝑖=1

𝑅2∑︁

𝑗=1

𝑅3∑︁

𝑘=1
𝑔𝑖𝑗𝑘𝑎𝑖 ⊗ 𝑏𝑗 ⊗ 𝑐𝑘.

Remark 3.2. The CP decomposition is a special case of a Tucker decomposition. Set
𝑅1 = 𝑅2 = 𝑅3 = 𝑅 and fix 𝑔 = ℎ𝑟 = ∑︀𝑟

𝑖=1 𝑒𝑖 ⊗ 𝑒𝑖 ⊗ 𝑒𝑖 – the Hadamard tensor. Then,

𝐴⊗𝐵 ⊗𝐶ℎ𝑅 =
𝑟∑︁

𝑖=1
𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖.

The above remark highlights that the Tucker decomposition is more flexible than
the CP decomposition. It also has a natural interpretation in terms of data compression.
This becomes interesting when choosing 𝑟 ≪ 𝑑1, 𝑟 ≪ 𝑑2 and 𝑅3 ≪ 𝑑3 still results in an
accurate approximation of the original tensor. The “big tensor” 𝑡 ∈ R𝑑1⊗R𝑑2⊗R𝑑3 arises
from blowing up a much smaller tensor that mediates interactions between different
factors. Hence, 𝑔 may be viewed as a tensor generalization of the loadings matrix in
PCA. The individual factors 𝐴, 𝐵 and 𝐶 describe how these original interactions are
embedded in a much larger space.

Although not necessary, one typically assumes that the blow-ups 𝐴, 𝐵, 𝐶 are
isometric embeddings. In other words, they correspond to matrices with orthogonal
columns normalized to unit length.

Example 3.3 (Tucker decomposition for matrices). Identify R𝑑1×𝑑2 with the tensor product
R𝑑1 ⊗ R𝑑2 . The exact correspondence is provided by vectorization and its inverse.
Applying this inverse to a tucker decomposition of an order two-tensor yields

𝑋 = vec−1(𝐴⊗𝐵𝑔) = 𝐴vec(𝑔)−1𝐵𝑇 = 𝐴𝐺𝑉 𝑇 .

Importantly the core matrix 𝐺 = vec−1(𝑔) ∈ R𝑟1×𝑅2 need not be diagonal. This
additional flexibility may allow for achieving accurate approximation with even smaller
internal degrees of freedom than the SVD (there, the core matrix Σ is necessarily
diagonal).

3.1 Specifications
The Tucker decomposition is rather general and flexible. Several specifications of the
Tucker decomposition have become popular in the data analysis literature.
3.1.1 Tucker2 decomposition

Set one of the blow-ups to be the identity matrix. For instance, choose 𝑅3 = 𝑑3 and fix
𝐶 = I. A Tucker2 decomposition of a tensor is

𝑡 = 𝐴⊗𝐵 ⊗ I𝑔.

6

The tensor 𝑔 itself mediates interactions between the first two tensor factors and the
third. This may be viewed as a PCA with an additional tensor product constraint on
the factor matrix. To see this, consider a matriciation that leaves the third tensor factor
invariant:

𝑡(3) = 𝑔(3)𝐴
𝑇 ⊗𝐵𝑇 and consequently 𝑡𝑇

(3) = 𝐴⊗𝐵𝑔𝑇
(3).

As advertised, 𝑔𝑇
(3) ∈ R𝑑1𝑑2×𝑑3 is a matrix that mediates correlations between the first

two tensor factors and the final one.
3.1.2 Tucker1 decomposition

The Tucker1 decomposition is an even more radical extension of the previous restriction.
Set two of the blow-ups to be the identity. For instance, choose 𝑅2 = 𝑑2, 𝑅3 = 𝑑3
and fix 𝐵 = I, as well as 𝐶 = I. This specification recovers the traditional PCA for
𝑑1 × 𝑑2𝑑3 matrices. Choose a matriciation for the first component and observe

𝑡(1) = 𝐴𝑔(1) where 𝐴 ∈ R𝑑1×𝑅1 , 𝑔(1) ∈ R𝑅1×𝑑2𝑑3 .

3.2 Computing the Tucker decomposition
It should not come as a surprise that the problem of computing Tucker decompositions
is challenging. We will now describe an alternating least squares algorithm (ALS)
that attempts to find good Tucker approximations of a given order-three tensor. The
approximation quality is measured in the Euclidean norm induced by the extended
standard inner product:

‖𝑡‖2 = ⟨𝑡, 𝑡⟩ =
∑︁

𝑖,𝑖′

∑︁

𝑗,𝑗′

∑︁

𝑘,𝑘′
𝑡𝑖𝑗𝑘𝑡𝑖′𝑗′𝑘′⟨𝑒𝑖, 𝑒𝑖′⟩⟨𝑒𝑗 , 𝑒𝑗′⟩⟨𝑒𝑘, 𝑒𝑘′⟩ =

∑︁

𝑖,𝑗,𝑘

𝑡2
𝑖𝑗𝑘.

ALS-type algorithms are a common heuristic to address complicated, multi-objective
optimization problems. The core idea is to fix all but one variable and optimize over
the remaining variable while expending as few computational resources as possible.
Sweeping across all different variables results in an update for each contribution and
the cheapness of each step allows for iterating this procedure many times.

On first sight, the problem of finding a Tucker decomposition is similar to computing
the CP decomposition of a tensor. However, there are two core differences: (i) the core
tensor 𝑔 ∈ R𝑟1 ⊗R𝑅2 ⊗R𝑅3 is a new optimization variable. (ii) the blow-ups 𝐴, 𝐵 and
𝐶 are assumed to be isometries.

Nonetheless, the final ALS algorithm looks rather similar to the one we developed
for the CP decomposition. Pseudo-code for it is provided in Algorithm1.

Let us start the discussion of the algorithm with the update for the core tensor 𝑔.
Suppose that 𝐴, 𝐵, 𝐶 are fixed isometries. Isometric invariance of the Euclidean norm
readily implies

‖𝑡−𝐴⊗𝐵 ⊗𝐶𝑔‖ =
⃦⃦
⃦𝐴𝑇 ⊗𝐵𝑇 ⊗𝐶𝑇 𝑡− 𝑔

⃦⃦
⃦.

Clearly, this expression is minimized if we choose

𝑔 = 𝐴𝑇 ⊗𝐵𝑇 𝐶𝑇 𝑡 ∈ R𝑟1 ⊗ R𝑅2 ⊗ R𝑅3 .

7

input : tensor 𝑡 ∈ R𝑑1 ⊗ R𝑑2 ⊗ R𝑑3 , inner dimensions (𝑅1, 𝑅2, 𝑅3)
Initialize isometries 𝐴 ∈ R𝑑1×𝑅1 , 𝐵 ∈ R𝑑2×𝑅1 , 𝐶 ∈ R𝑑3×𝑅3 and 𝑁max;
while 𝑖 < 𝑁max do

𝑔 ← 𝐴𝑇 ⊗𝐵𝑇 ⊗𝐶𝑇 𝑡;
Compute SVD of 𝑇(1)𝐵 ⊗𝐶, extract top left singular vectors and update
𝐴← [𝑢1, . . . , 𝑢𝑅1]𝑇 ;

Compute SVD of 𝑇(2)𝐴⊗𝐶,extract top left singular vectors and update
𝐵 ← [𝑢1, . . . , 𝑢𝑅2]𝑇 ;

Compute SVD of 𝑇(3)𝐴⊗𝐵, extract top left singular vectors and update
𝐶 ← [𝑢1, . . . , 𝑢𝑅3]𝑇 ;

(Break loop if a certain stopping condition is reached);
𝑖← 𝑖 + 1;

end
output : matrix factors 𝐴 ∈ R𝑑1×𝑅, 𝐵 ∈ R𝑑2×𝑅, 𝐶𝑑3×𝑅

Algorithm 1: Alternating least squares (ALS) algorithm for approximating the Tucker
decomposition.

This simple update rule fully takes care of the core tensor and we can restrict our
attention to optimizing the isometries individually. Suppose that 𝑔 is of the form (3.2).
Then, the fact that 𝐴, 𝐵 and 𝐶 are isometries implies

‖𝑡−𝐴⊗𝐵 ⊗𝐶𝑔‖22 =⟨𝑡, 𝑡⟩ − 2⟨𝐴𝑇 ⊗𝐵𝑇 ⊗𝐶𝑇
⏟ ⏞

𝑔

𝑡, 𝑔⟩+ ⟨𝑔, 𝐴𝑇 𝐴⏟ ⏞
I
⊗𝐵𝑇 𝐵⏟ ⏞

I
⊗𝐶𝑇 𝐶⏟ ⏞

I
𝑔⟩

=‖𝑡‖2 − 2⟨𝑔, 𝑔⟩+ ⟨𝑔, 𝑔⟩ = ‖𝑡‖2 − ⟨𝑔, 𝑔⟩.

The first contribution ‖𝑡‖2 is fixed and constant. In turn, minimizing the Euclidean
distance to 𝑡 is equivalent to maximizing the norm of the core tensor 𝑔 = 𝐴𝑇⊗𝐵𝑇⊗𝐶𝑇 𝑡.
If we keep 𝐵,𝐶 fixed, the single-objective optimization over the remaining isometry
becomes

𝐴∈R𝑑1×𝑟1

⃦⃦
⃦𝐴𝑇 ⊗𝐵𝑇 ⊗𝐶𝑇 𝑡

⃦⃦
⃦

2
subject to 𝐴𝑇 𝐴 = I.

We can isolate the contribution of 𝐴𝑇 by choosing a particular matriciation (recall that
the Euclidean norm remains invariant under re-grouping of indicies):

⃦⃦
⃦𝐴𝑇 ⊗𝐵𝑇 ⊗𝐶𝑇 𝑡

⃦⃦
⃦

2
=

⃦⃦
⃦𝐴𝑇 𝑇(1)𝐵 ⊗𝐶

⃦⃦
⃦

2

𝐹

Here, ‖ · ‖𝐹 denotes the Frobenius norm (the natural Euclidean norm for matrices).
Principal component analysis tells us how me maximize this expression over all isometries.
Simply compute an SVD 𝑡 ⊗ 𝐵 ⊗ 𝐵 = 𝑈Σ𝑉 𝑇 ∈ R𝑑1×𝑅2𝑅3 , collect the leading 𝑅1
singular vectors and transpose:

𝐴𝑇
♯ = [𝑢1, . . . , 𝑢𝑅1] ∈ R𝑅1×𝑑1 .

8

The computational cost of this update is governed by the SVD. We emphasize that our
approach to the problem results in the SVD of a 𝑑1 ×𝑅2𝑅3-matrix. The (potentially
large) dimensions 𝑑2 and 𝑑3 do not feature at all.

The same idea allows for updating the other isometries 𝐵 and 𝐶 in an analo-
gous fashion. The only difference is that other matriciations are used to isolate the
contributions of a given isometry (𝑇(2) for 𝐵 and 𝑇(3) for 𝐶).

Lecture 15: Tensor train decomposition I
Scribe: Richard Kueng

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
May 20, 2019

1 Agenda
1. Motivation: the Schmidt decomposition for order-two tensors
2. Tensor train decomposition: keep applying the Schmidt decomposition sequentially
3. Examples of tensor train representations

2 Motivation: Schmidt decompositions of order-2 tensors
2.1 Recapitulation: The SVD

Let 𝐴 ∈ ℒ(C𝑑2 ,C𝑑1) be an operator, or equivalently: a complex-valued 𝑑1 × 𝑑2 matrix.
Every such operator admits a singular value decomposition:

𝐴 = 𝑈Σ𝑉 *.

Here, Σ ∈ R𝑟×𝑟 is a diagonal matrix that collects the singular values and 𝑈 ∈ C𝑑1×𝑟,
𝑉 ∈ C𝑑2×𝑟 are isometries. In wiring notation, we write

𝐴 = 𝑈 Σ 𝑉 *

and use a round box to notationally underline the diagonal nature of Σ.
The SVD by itself may already be a compression of the original matrix. Suppose

that 𝐴 has rank 𝑟 ≪ min{𝑑1, 𝑑2}. Then, the inner lines denote indices that live in C𝑟,
rather than C𝑑1 (left), or C𝑑2 (right). Even if this is not the case, we may obtain a
compressed approximation by truncating the inner index dimension from 𝑟 = rank(𝐴)
to 𝑅 ≤ 𝑟. Define Σ(𝑅) = diag(𝜎1, . . . , 𝜎𝑅, 0, . . . , 0) and set 𝐴(𝑅) = 𝑈Σ(𝑅)𝑉

*. Isometric
invariance of the Frobenius norm then implies

⃦⃦
⃦𝐴 − 𝐴(𝑅)

⃦⃦
⃦

2

𝐹
=
⃦⃦
⃦𝑈
(︁
Σ − Σ(𝑅)

)︁
𝑉 *
⃦⃦
⃦

2

𝐹
=

𝑟∑︁

𝑖=𝑅+1
𝜎𝑖(𝐴)2. (1)

The Eckart-Young-Mirski Theorem asserts that this rank-𝑅 approximation is optimal.
2.2 The Schmidt decomposition of order two tensors
The SVD and its truncated version readily extend to tensors of order two. Recall
that we may identify the space of complex-valued 𝑑1 × 𝑑2 matrices with C𝑑1 ⊗ C𝑑2 .
The precise correspondence is provided by vectorization (𝑥𝑦𝑇 ↦→ 𝑥 ⊗ 𝑦) and the outer
product representation (𝑥 ⊗ 𝑦 ↦→ 𝑥𝑦𝑇). Identify 𝑥 ∈ C𝑑1 ⊗ C𝑑2 with a 𝑑1 × 𝑑2 matrix
𝑋 and apply an SVD:

𝑥 = 𝑋 = 𝑈 Σ 𝑉 *
= 𝑈

𝑉

Σ = 𝑈

𝑉
𝜎

2

Here, we have implicitly defined 𝜎 = vec(Σ) = ∑︀𝑟
𝑖=1 𝜎𝑖𝑒𝑖 ⊗ 𝑒𝑖 ∈ C𝑟 ⊗ C𝑟. It is

worthwhile to formulate this decomposition formula explicitly without wiring diagrams.
Set 𝑟 = rank(𝑋) and decompose the isometries into columns: 𝑈 = [𝑢1, . . . , 𝑢𝑟] ∈ C𝑑1×𝑟,
𝑉 = [𝑣1, . . . , 𝑣𝑟] ∈ C𝑑2×𝑟. Then, the above decomposition reads

𝑥 = 𝑈 ⊗ 𝑉 vec(Σ) =
𝑟∑︁

𝑖=1
𝑈 ⊗ 𝑉

𝑟∑︁

𝑖=1
𝜎𝑖𝑒𝑖 ⊗ 𝑒𝑖 =

𝑟∑︁

𝑖=1
𝜎𝑖𝑢𝑖 ⊗ 𝑣𝑖 ∈ C𝑑1 ⊗ C𝑑2 . (2)

Definition 2.1. The decomposition (2) is called a Schmidt decomposition. The parameter
𝑟 = rank(vec−1(𝑥)) is called the Schmidt-rank.

Schmidt decompositions are an important tool in quantum information theory. They
features prominently in the study of bi-partite entanglement. The following properties
follow directly from the SVD.

Proposition 2.2. The Schmidt decomposition (2) has many desirable features:

1. the weights 𝜎1, . . . , 𝜎𝑟 are strictly positive,
2. {𝑢1, . . . , 𝑢𝑟} is a set of 𝑟 orthonormal vectors in C𝑑1,
3. {𝑣1, . . . , 𝑣𝑟} is a set of 𝑟 orthonormal vectors in C𝑑2.

Another important feature of Schmidt-decomposition is compressed approximation.
The following claim is an immediate consequence of Equation (1).

Corollary 2.3. Fix 𝑥 ∈ C𝑑1 ⊗C𝑑2 and 𝑅 ∈ N. Then, the truncated Schmidt decomposition
𝑥(𝑅) = ∑︀𝑅

𝑖=1 𝜎𝑖𝑢𝑖 ⊗ 𝑣𝑖 is the best (tensor) rank-𝑅 approximation of 𝑥. It achieves

‖𝑥 − 𝑥(𝑅)‖2 =
𝑟∑︁

𝑖=𝑅+1
𝜎2

𝑖 .

where, ‖ · ‖ denotes the Euclidean norm on C𝑑1 ⊗ C𝑑2.

2.3 Context: relation between Schmidt and CP+Tucker decompositions
The Schmidt decomposition (2) is a natural starting point for cornering tensor decom-
positions. For order-two tensors it reads

𝑥 = 𝑈

𝑉
𝜎 =

𝑟∑︁

𝑖=1
𝜎𝑖

𝑈

𝑉

𝑒𝑖

𝑒𝑖

(3)

The CP decomposition generalizes the final expression to higher order tensors:

𝑡 =
𝑅∑︁

𝑖=1
𝜆𝑖

𝑒𝑖

𝑒𝑖

𝑒𝑖𝐴

𝐵

𝐶

=
𝑅∑︁

𝑖=1
𝜆𝑖𝑎𝑖 ⊗ 𝑏𝑖 ⊗ 𝑐𝑖 ∈ R𝑑1 ⊗ R𝑑2 ⊗ R𝑑3 .

3

The Tucker decomposition is based on a generalization of the second expression in
Eq. (3):

𝑡 =
𝐴

𝐵

𝐶

𝑔 =
𝑅1∑︁

𝑖=1

𝑅2∑︁

𝑗=1

𝑅3∑︁

𝑘=1
𝑔𝑖𝑗𝑘𝑎𝑖 ⊗ 𝑏𝑗 ⊗ 𝑐𝑘 ∈ R𝑑1 ⊗ R𝑑2 ⊗ R𝑑3 .

While both decomositions coincide for order-two tensors – see Eq. (3) – they obtain
a unique genuine tensor flavor when extended to higher order. Moreover, each gen-
eralization comes at a price: Corollary 2.3 does not generalize. It is not clear how
to truncate CP and Tucker decompositions in an optimal fashion. The tensor train
decomposition – the main topic of the remaining lectures – is designed to preserve this
optimal compression property.

3 The tensor train decomposition
3.1 Derivation of tensor train representations
The Schmidt decomposition (2) provides a way to factorize order-two tensors into sums of
elementary tensors. We can naively apply it to an order-three tensor 𝑡 ∈ C𝑑1 ⊗C𝑑2 ⊗C𝑑3

by grouping the second and third tensor factor together: Interpret C𝑑2 ⊗C𝑑3 as a single
complex vector space C𝑑2𝑑3 of much larger dimension. In wiring notation,

𝑡 = 𝑡 =
𝐴(1)

𝑉

𝜎(1)
=

𝐴(1)

𝑉

𝜎(1)
,

where we have set 𝐴(1) = 𝑈 ∈ C𝑑1×𝑟. Here, 𝑟 denotes the Schmidt rank of 𝑡 viewed as
an order-two tensor. A single Schmidt decomposition allows for decoupling the first
tensor factor from the rest. But nothing stops us from repeating this procedure. Insert
a resolution of the identity to obtain

𝐴(1)

𝑉

𝜎(1)
=

𝑟∑︁

𝑖=1

𝐴

𝑉

𝜎(1)
𝑒𝑖 𝑒𝑖 (4)

and apply a Schmidt decomposition to each 𝑉 𝑒𝑖 ∈ C𝑑2 ⊗ C𝑑3 individually:

𝑉
𝑒𝑖 = 𝑉 (𝑖) = 𝐵(𝑖)

𝐶(𝑖)
𝜎(𝑖) = 𝐵

𝐶
𝜎(2)

𝑒𝑖

. (5)

4

The last reformulation is a mathematical trick. We absorb the index dependence into
an additional tensor degree of freedom: 𝐵 corresponds to an order-three tensor that
implicitly takes care of the labeling. Inserting Eq. (5) into Eq. (4) yields

𝑡 =
𝑟∑︁

𝑖=1

𝐴

𝐵

𝐶

𝑒𝑖 𝑒𝑖
𝜎(1)

𝜎(2)
=

𝐴

𝐵

𝐶

𝜎(1)

𝜎(2)
,

where we have absorbed the resolution of the identity. We can now bend indices and
use 𝜎(𝑖) = vec(Σ(𝑖)) to represent the wiring diagram on the right hand side in a more
symmetric fashion. To further increase readability, we also rotate wiring diagrams by
90 degrees:

𝑡 = 𝐴 Σ(1) 𝐵 Σ(2) 𝐶 . (6)

This is a tensor train decomposition. We can further pinpoint the underlying tensor
structure by absorbing the diagonal matrices Σ(1) and Σ(2) into one of the other tensor
components:

𝑡 = �̃� 𝐵 �̃� . (7)

The tensor train decomposition factorizes a general order-three tensor into a “train” of
three individual tensors: the boundary is comprised of order two-tensors �̃�, �̃� while
the center corresponds to an order three tensor 𝐵. This asymmetry can be defined
away by another minor modification. Include an additional tensor factor on each end of
the train and combine them with a trace operation:

𝑡 = 𝐴 𝐵 𝐶 𝑌 .

The matrix 𝑌 provides an additional degree of freedom. Choosing an outer product
𝑌 = 𝑦𝑙𝑦

*
𝑟 effectively recovers the asymmetric tensor train from (7). An extension of

this decomposition to tensors of arbitrary order is now straightforward, e.g. for order-8
tensors we obtain

𝑡 = 𝐴(1) 𝐴(2) 𝐴(3) 𝐴(4) 𝐴(5) 𝐴(6) 𝐴(7) 𝐴(8) 𝑌 (8)

A single order three-tensor – a “wagon”– represents each tensor factor. These wagons
are connected by an internal line that represents a virtual degree of freedom. This line
connects all the wagons as well as the single matrix 𝑌 at the top – the “locomotive”.

5

3.2 Definition of tensor trains and key features

Definition 3.1. A tensor train (TT) is a tensor 𝑡 ∈ C𝑑1⊗· · ·⊗C𝑑𝑛 that is fully characterized
by an array of 𝑁 order three tensors

{︁
𝐴(𝑖)

}︁
∈ C𝐷

𝑖 ⊗ C𝐷𝑖+1 ⊗ C𝑑𝑖 and a single matrix
𝑌 ∈ C𝐷𝑁+1×𝐷1 :

𝑡 =
𝑑1∑︁

𝑖1=1
· · ·

𝑑𝑁∑︁

𝑖𝑁 =1
tr
(︁
𝐴

(1)
::𝑖1𝐴

(2)
::𝑖2 · · · 𝐴

(𝑁)
::𝑖𝑁

𝑌
)︁
𝑒𝑖1 ⊗ 𝑒𝑖2 ⊗ · · · ⊗ 𝑒𝑖𝑁 . (9)

Here, 𝐴
(𝑘)
::𝑖𝑘

∈ C𝐷𝑖×𝐷𝑖+1 denote the frontal matrix slices of 𝐴(𝑘) with respect to the third
factor.

Note that we may express each order three tensor 𝐴(𝑘) completely by its frontal
slices:

𝐴
(𝑘)
𝑖𝑘

= 𝐴
(𝑘)
::𝑖𝑘

for 1 ≤ 𝑖𝑘 ≤ 𝑑𝑘.

This re-formulation is not only convenient notation-wise. It also highlights the origin of
an alternative name for tensor trains.

Remark 3.2 (Alternative name: matrix product state (MPS)). According to Eq. (9), each expan-
sion coefficient of 𝑡 with respect to the extended standard basis is a trace of a product
of matrices: 𝑡𝑖1···𝑖𝑁 = tr

(︁
𝐴

(1)
𝑖1 · · · 𝐴

(𝑁)
𝑖𝑁

𝑌
)︁
. In quantum mechanics, vectors are typically

associated with pure states: Up to normalization, 𝜌 = 𝑡𝑡* describes a joint pure state
of 𝑁 quantum mechanical systems. These two features together explain an alternative
nomenclature from quantum mechanics: matrix product states.

It is instructive to introduce the following summary parameters for external and
internal dimensions:

𝑑 = max
1≤𝑖≤𝑁

𝑑𝑖 and 𝐷 = max
1≤𝑖≤𝑁+1

𝐷𝑖.

The maximum internal dimension 𝐷 is called the bond dimension. The dimension of
the tensor product C𝑑1 ⊗ · · · ⊗ C𝑑𝑁 is then roughly 𝑑𝑁 , while the number of degrees of
freedom in a TT is

deg(TT) = 𝑁𝑑𝐷2 + 𝐷2 = (𝑁𝑑 + 1)𝐷2. (10)

The tensor train representation is complete: every tensor 𝑡 ∈ C𝑑1 ⊗ · · · ⊗ C𝑑𝑁 can be
represented as a TT. This expressiveness, however, does not come cheap. In general,
the internal dimensions 𝐷 must scale exponentially in the number of tensor factors:

𝐷 ≃ 𝑑(𝑁−1)/2
√

𝑁
.

This relation readily follows from comparing (10) to the overall tensor space dimension
𝑑𝑁 . It should not come as a surprise – dimensions of tensor products grow very quickly.
Nonetheless, such a general scaling is prohibitively expensive. Why would we want

6

to represent individual expansion coefficients of an order 𝑁 tensor as the trace of a
product of 𝑁 𝑑𝑁/2 × 𝑑𝑁/2 matrices?

The true advantage of the TT formalism stems from manually trimming the internal
dimension to a much smaller value. Suppose that 𝐷 only scales polynomially in the
number of tensor factors 𝑁 . Then, the associated TT is described by

deg(TT) = 𝐶𝑑poly(𝑁)

degrees of freedom – an exponential compression. What is more, the connection to the
SVD exactly tells us how we have to trim a general tensor train: isolate the diagonal
singular value matrices between the trains, see Eq. (6), and truncate them to only
contain the 𝐷 largest singular values. The Eckart-Young-Mirski Theorem ensures that
this compression is optimal – even for large tensor products. The incurred approximation
error is bounded by the singular values that we cut out.
3.3 Examples and and a non-example

3.3.1 Elementary tensor product

Consider the elementary tensor product 𝑡 = 𝑒1 ⊗ · · · ⊗ 𝑒1 ∈ C𝑑 ⊗ · · · ⊗ C𝑑. Then, its
expansion coefficients with respect to the extended standard basis are

[𝑡]𝑖1,...,𝑖𝑁
= 𝛿𝑖1,1 · · · 𝛿𝑖𝑁 ,1.

These admit a particularly concise tensor train decomposition. Choose 𝐷 = 1 (trivial
bond dimension) and set 𝐴𝑗 = 𝛿1,𝑗 ∈ C ≃ C1×1 for all 1 ≤ 𝑗 ≤ 𝑑 and 𝑌 = 1 ∈ C = C1×1.
Then,

tr(𝐴𝑖1𝐴𝑖2 · · · 𝐴𝑖𝑁 𝑌) = 𝛿𝑖1,1 · · · 𝛿𝑖𝑁 ,1 = [𝑡]𝑖1,...,𝑖𝑁
.

More general elementary tensor products 𝑥1 ⊗ · · · ⊗ 𝑥𝑁 can be constructed in a similar
fashion.
3.3.2 The GHZ state

Define the following tensor 𝐴 ∈ C2 ⊗ C2 ⊗ C2 (𝑑 = 𝐷 = 2) via its frontal slices

𝐴1 = 𝐴::1 =
(︃

1 0
0 0

)︃
, 𝐴2 = 𝐴::2 =

(︃
0 0
0 1

)︃

and set 𝑌 = I ∈ C2×2. Then, this collection defines a tensor train on (C𝑑)⊗𝑁 with
bond dimension 𝐷. Note that 𝐴2

𝑖 = 𝐴𝑖 for 𝑖 = 1, 2 and 𝐴1𝐴0 = 0 ∈ C2×2. Therefore,

𝑡 =
2∑︁

𝑖1=1
· · ·

2∑︁

𝑖𝑁 =1
tr(𝐴𝑖1 · · · 𝐴𝑖𝑁 I)𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑁

=
2∑︁

𝑖1=1
· · ·

2∑︁

𝑖𝑁 =1
𝛿𝑖1=···=𝑖𝑁 𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑁 = 𝑒⊗𝑁

1 + 𝑒⊗𝑁
2 .

This describes a highly structured tensor product vector that is associated to a prominent
pure quantum state 𝜌 = 𝑡𝑡*/2 – the Greenberger–Horne–Zeilinger (GHZ) state.

7

3.3.3 The 𝑊 -state

Define the following tensor 𝐴 ∈ C2 ⊗ C2 ⊗ C2 (𝑑 = 𝐷 = 2) via its frontal slices:

𝐴1 = 𝐴::1 =
(︃

1 0
0 1

)︃
= 𝐼, 𝐴2 = 𝐴::2 =

(︃
0 1
0 0

)︃
and set 𝑌 =

(︃
0 1
1 0

)︃
.

Note that 𝐴2
1 = 𝐴1, 𝐴1𝐴2 = 𝐴2 and 𝐴2𝐴2 = 0. Moreover, tr(𝐴1𝑌) = 0 and

tr(𝐴2𝑋) = 1. These elementary relations fully characterize the following tensor train
with bond dimension 𝐷 on (C2)⊗𝑁 :

𝑡 =
2∑︁

𝑖1=1
· · ·

2∑︁

𝑖𝑁 =1
tr(𝐴𝑖1 · · · 𝐴𝑖𝑁 𝑌)𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑁

=𝑒2 ⊗ 𝑒
⊗(𝑁−1)
1 + 𝑒1 ⊗ 𝑒2 ⊗ 𝑒

⊗(𝑁−2)
1 + · · · + 𝑒

⊗(𝑁−1)
1 ⊗ 𝑒1.

Up to normalization, this TT produces a pure quantum state that is an equal superpo-
sition of all possible permutations of 𝑒2 ⊗ 𝑒

⊗(𝑁−1)
1 :

𝑡 = 𝑁 !𝑃∨𝑁 𝑒2 ⊗ 𝑒1 ⊗ · · · ⊗ 𝑒1.

The associated (pure) quantum state is called the 𝑊 -state. It features prominently in
the study of multi-partite entanglement.
3.4 A random element of (C𝑑)⊗𝑁

Set 𝑑1 = . . . = 𝑑𝑁 = 𝑑 and consider a Haar-random unit vector in (C𝑑)⊗𝑁 ≃ C𝑁𝑑:

𝑢 ∼ S
(︁
C𝑁𝑑

)︁
.

The parameter counting argument from (10) suggests that an exponentially large bond
dimension 𝐷 ≃ 𝑑𝑁/2 is required to accurately approximate this generic tensor. This is
indeed the case. To see this, divide the 𝑁 tensor factors into two families. The first 𝑁1
factors are grouped into family 𝐴, while the remaining 𝑁 − 𝑁1 factors belong to family
𝐵. Haar integration implies the following concentration identity:

E
⃦⃦
⃦⃦tr𝐵(𝑢𝑢*) − 1

𝑑𝑁1
𝐼

⃦⃦
⃦⃦

2
< 𝑑−(𝑁−𝑁1)/2.

We refer to Homework Sheet II for details. Moreover, Levi’s Lemma asserts that the
norm deviation of any concrete realization of 𝑢 will concentrate sharply around this
expected value. Next, choose 𝑁1 = 𝑁/3. This ensures 𝑑𝑁1 ≥ 𝑑(𝑁−𝑁1/2) and in turn,

⃦⃦
⃦𝑑𝑁1tr𝐵(𝑢𝑢*) − I

⃦⃦
⃦

2
< 1 with overwhelming probability.

Next, note that we may express I as a sum of dim(𝐴) = 𝑑𝑁1 outer products: I = ∑︀
𝑖 𝑣𝑖𝑣

*
𝑖 .

Inserting this into the norm bound demands
⃦⃦
⃦⃦
⃦⃦𝑑

𝑁1tr𝐵(𝑢𝑢*) −
𝑑𝑁1∑︁

𝑖=1
𝑣𝑖𝑣

*
𝑖

⃦⃦
⃦⃦
⃦⃦

2

< 1 with overwhelming probability.

8

This has profound consequences. The partial trace tr𝐵(𝑢𝑢*) must approximate each of
the 𝑑𝑁1 outer products to accuracy strictly larger than one. This is only possible, if the
TT representation gives rise to at least 𝑑𝑁1 different outer products when taking the
partial trace. In turn, this imposes a lower bound on the bond dimension that connects
the system 𝐴 with the system 𝐵:

𝐷𝑁1,𝑁1+1 ≥ 𝑑𝑁1 = 𝑑𝑁/3.

We thus conclude that the largest bond dimension for expressing a generic vector must
grow exponentially in the number of tensor factors. This argument may be readily
extended to lower bound any virtual degree of freedom: 𝐷𝑖 ≥ 𝑑𝑁/3 for all 1 ≤ 𝑖 ≤ 𝑁 .
Indeed, a random vector 𝑢 ∈ S𝑑𝑁 does not care about the specific ordering of tensor
factors and we may permute them at will.

Lecture 16: Tensor train decomposition II
Scribe: Richard Kueng

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
May 22, 2019

1 Agenda
1. Recapitulation: tensor trains (TT)/matrix product states (MPS)
2. TT properties and symmetries
3. Exponential decay of correlations accross a tensor

2 Recapitulation: tensor trains/ matrix product states
2.1 Definition of tensor trains
Tensor trains (TT) are a decomposition of order-𝑁 tensors. They arise from sequentially
applying Schmidt decompositions to separate individual tensor factors one at a time.
This approach is rather different from other prominent tensor decompositions and has
very unique features. Over the last decades, TT have become a highly useful tool in
quantum physics, as well as machine learning.

Definition 2.1 (tensor train (TT)). A tensor train representation of 𝑡 ∈ C𝑑1 ⊗ · · · ⊗ C𝑑𝑁 is
characterized by an array of 𝑁 order-three tensors 𝐴(1) ∈ C𝐷1 ⊗C𝐷2 ⊗C𝑑1 , . . . , 𝐴(𝑁) ∈
C𝐷𝑁 ⊗ C𝐷𝑁+1 ⊗ C𝑑𝑁 , and a single matrix 𝑌 ∈ C𝐷𝑁+1×𝐷1 :

𝑡 =
𝑑1∑︁

𝑖1=1
· · ·

𝑑𝑁∑︁

𝑖𝑁 =1
tr
(︁
𝐴

(1)
::𝑖1𝐴

(2)
::𝑖2 · · · 𝐴

(𝑁)
::𝑖𝑁

𝑌
)︁
𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑁 ∈ C𝑑1 ⊗ · · · ⊗ C𝑑𝑁 . (1)

The elements 𝐴
(𝑘)
::𝑖𝑘

∈ C𝐷𝑘×𝐷𝑘+1 denote the frontal slices of the tensor 𝐴(𝑘), and
𝑒1, . . . , 𝑒𝑑𝑘

denotes the standard basis of C𝑑𝑘 .

The TT decomposition becomes exceptionally clear in wiring notation. Here is an
example of a general TT for 𝑁 = 8 factors:

𝐴(1)

C𝑑1

C𝐷1

𝐴(2)

C𝑑2

C𝐷2

𝐴(3)

C𝑑3

C𝐷3

𝐴(4)

C𝑑4

C𝐷4

𝐴(5)

C𝑑5

C𝐷5

𝐴(6)

C𝑑6

C𝐷6

𝐴(7)

C𝑑7

C𝐷7

𝐴(8)

C𝑑8

C𝐷8

𝐵
C𝐷9

The internal dimensions 𝐷1, . . . , 𝐷𝑁+1 are often called bond dimensions. Their size does
not feature in the final tensor expressions. Viewed from this angle, the bond dimensions
are “virtual” degrees of freedom. In contrast, the dimensions 𝑑1, . . . , 𝑑𝑁 are fixed and
in one-to-one correspondence with the tensor product space C𝑑1 ⊗ · · · ⊗ C𝐷𝑁 – the
actual object of interest. As such, these dimensions are often called physical dimensions,
because they carry an actual meaning.

2

Remark 2.2 (Alternative name: matrix product states (MPS)). The expansion (1) is characterized
by the trace of a product of 𝑁 matrices – the frontal slices associated with the tensor
trains. Moreover, the outer product 𝑡𝑡* is proportional to a pure state of a joint quantum
system. For these reasons, tensor trains are typically called matrix product states in the
physics literature.

TT are only valuable if the bond dimension scales moderately in the number of tensor
factors. A simple parameter counting argument highlights that this is a substantial
restriction. A generic tensor will require an exponentially large bond dimension for
accurate representation.
In summary: TT can only efficiently represent a tiny fraction of all elements in a very
large tensor space. However, this small fraction contains tensor products with very
reasonable behavior that reflects our intuition about how physically meaningful tensors
should behave. One such feature – exponential decay of correlations – will be covered
later in today’s lecture.
2.2 Additional definitions and Physics jargon
The first definition addresses tensor product spaces, independent of concrete tensor
representations.

Definition 2.3 (thermodynamic limit for tensor products). Set 𝑑1 = · · · = 𝑑𝑁 = 𝑑. The
thermodynamic limit is the limit of infinitely large tensor products of C𝑑:

lim
𝑁→∞

(︁
C𝑑
)︁⊗𝑁

.

The thermodynamic limit may be viewed as a mathematical idealization. The study
of many tensor-related properties – as well as tensors themselves – often becomes easier.
A concrete example are moments of random variables and, more generally, polynomials.
We know from earlier lectures that both are related to the symmetric subspace of
(C𝑑)⊗𝑁 . High order moments tend to become more and more well-behaved and regular.
Likewise, polynomials of very high degrees accurately approximate smooth functions
(Taylor’s theorem) which are often easier to work with.

Within physics, the thermodynamic limit arises naturally when one tries to approx-
imate infinite dimensional Hilbert spaces in a discrete fashion. Informally speaking,
it marks the transition between matrix analysis and functional analysis. Traditional
quantum mechanics is phrased in this language. Interestingly, the first introduction of
tensor trains / matrix product states was phrased in this language (Fannes, Nachtergaele,
Werner, Finitely correlated states on quantum spin chains, 1992). Only later, Frank
Verstraete (then at Caltech) and others discretized this observation and popularized
the TT/MPS framework in its current finite-dimensional form.

Definition 2.4 (Translation invariant tensor trains). A tensor train 𝐴(1), 𝐴(𝑁), 𝑌 is translation
invariant if all order-three tensors are the same

𝐴(𝑖) = 𝐴(𝑗) ∈ C𝐷 ⊗ C𝐷 ⊗ C𝑑 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑑.

This in particular implies 𝑑1 = 𝑑2 = · · · 𝑑𝑁 and 𝐷1 = 𝐷2 = · · · = 𝐷𝑁+1 = 𝐷.

3

Translation invariance substantially reduces the complexity of a TT decomposition. It
naturally arises in applications, where the individual tensor factors are indistinguishable,
e.g. a quantum system describing 𝑁 identical particles on a line. Symmetric tensors
𝑡 ∈ ⋁︀𝑁

(︁
C𝑑
)︁

are another promising candidate for such a substantial simplification.
Such tensors arise naturally when one considers the moment distribution of data – e.g.
frequencies of words in topic related texts.

Definition 2.5 (Periodic boundary conditions). A tensor train 𝐴(1), . . . , 𝐴(𝑁), 𝑌 is said to
have periodic boundary conditions if 𝐷𝑁+1 = 𝐷1 and 𝑌 = I.

This nomenclature has a geometric origin. The left and right-most constituents of a
TT are connected by a trace. If 𝐵 = I, there is no discontinuity when moving from
the 𝑁 -th train to the first. Effectively, the trains form a circle, not a line. Periodic
boundary conditions go well with translation invariance. Combining both assumptions
results in a circle of identical trains with physical indices pointing outwards:

𝐴

C𝑑

C𝐷

𝐴

C𝑑

C𝐷

𝐴C𝑑

C𝐷

𝐴

C𝑑 C𝐷 𝐴

C𝑑

C𝐷

𝐴

C𝑑

C𝐷

𝐴 C𝑑

C𝐷

𝐴

C𝑑C𝐷
𝐴

C𝑑

C𝐷

2.3 Uniqueness of tensor train decompositions

Recall that tensor factorizations are typically unique. Kruskal’s theorem provides a
rather mild condition that ensures that the minimal rank decomposition of a tensor – i.e
the optimal CP decomposition – is unique up to trivial ambiguities. This is not the case
for matrix factorizations. If 𝑋 = 𝑈𝑉 * is a matrix factorization, then so is 𝑈𝑅𝑅−1𝑉 *

for any invertible matrix 𝑅 ∈ C𝑟×𝑟′ (𝑟′ ≥ 𝑟). Tensor train decompositions behave in a
similar fashion. This lack of uniqueness should not come as a surprise. After all, we
developed tensor train decomposition by sequentially applying Schmidt decompositions.
The latter simple correspond to matriciating tensors and applying a matrix SVD.

Theorem 2.6 (Gauge freedom). Let 𝐴(1), . . . , 𝐴(𝑁), 𝑌 be a TT with physical dimensions
𝑑1, . . . , 𝑑𝑁 and bond dimensions 𝐷1, . . . , 𝐷𝑁+1. Choose 𝑎1 ≥ 𝐷1, . . . , 𝑎𝑁+1 ≥ 𝐷𝑁+1
and 𝑅1 ∈ C𝑎1×𝐷1 , . . . , 𝑅𝑁+1 ∈ C𝑟𝑁+1×𝐷𝑁+1 such that each matrix admits a left inverse,

4

i.e. 𝑅†
𝑖 𝑅𝑖 = 𝐼 ∈ C𝐷𝑖×𝐷𝑖. Then, the transformations

𝐴
(𝑘)
::𝑖𝑘

↦→𝑅𝑘𝐴
(𝑘)
::𝑖𝑘

𝑅†
𝑘+1 for all 1 ≤ 𝑖𝑘 ≤ 𝑑𝑘,

𝑌 ↦→𝑅𝑁+1𝑌 𝑅†
1

do not affect the associated tensor 𝑡 ∈ C𝑑1 ⊗ . . . ⊗ C𝑑𝑁 .

Proof. With wiring diagrams. We will address the case 𝑁 = 4, but the proof readily
generalizes. Let �̃�(1), . . . , �̃�(4) and 𝐵 denote the descriptions that result from such a
transformation. Then,

𝑡 = �̃�(1) �̃�(2) �̃�(3) �̃�(4) �̃�

= 𝐴(1) 𝐴(2) 𝐴(3) 𝐴(4)𝑅†
1 𝑅1 𝑅†

2 𝑅2 𝑅†
3 𝑅3 𝑅†

4 𝑅4 𝑅†
5 𝑅5 𝐵

= 𝐴(1) 𝐴(2) 𝐴(3) 𝐴(4) 𝐵 = 𝑡

Physicists call this freedom a gauge freedom. It is exploited by several state-of-the art
algorithms that use tensor trains. It allows for converting the order three tensors 𝐴(𝑘)

into a standard form that greatly reduces the cost of computing tensor contractions.

3 Exponential decay of correlations within tensor trains
We have already alluded to physically well-motivated structures that seem to be hidden
within the TT formalism. Chief among them is the following feature: Correlations
between individual tensor factors decay exponentially with their mutual distance.
3.1 Conditional expectation value
In order to rigorously state this claim, we need a bit of additional notation.

Definition 3.1 (Conditional expectation value). Fix a tensor 𝑡 ∈ C𝑑1 ⊗ · · · ⊗ C𝑑𝑁 and an
operator 𝐴 acting on this tensor product space. The conditional expectation value of 𝐴
with respect to 𝑡𝑡* is

⟨𝐴⟩𝑡𝑡* = tr(𝐴𝑡𝑡*)
⟨𝑡, 𝑡⟩ = ⟨𝑡, 𝐴𝑡⟩

⟨𝑡, 𝑡⟩ .

The origin of this notion hails from quantum mechanics. The normalized outer
product 𝑡𝑡*/⟨𝑡, 𝑡⟩ describes a pure quantum state of the joint system comprised of 𝑁
(potentially different) quantum mechanical systems.

The operator 𝐴 may correspond to an element in a quantum mechanical measure-
ment: 𝐴 = 𝐻𝜆𝑘

⪰ 0, where ∑︀𝑘 𝐻𝜆𝑘
= I. In this case, the conditional expectation

value tells us the probability for obtaining outcome 𝜆𝑘 when measuring 𝜌 = 𝑡𝑡*.

5

3.2 Aside: quantum measurements vs. observables
Many physicists like to combine a quantum measurement (resolution of the identity)
with the associated outcomes to obtain a single hermitian operator. This operator is
called an observable:

𝑂 =
∑︁

𝑘

𝜆𝑘𝐻𝑘.

The conditional expectation value of an observable then corresponds to the expected
measurement outcome:

⟨𝑂⟩𝑡𝑡* = tr
(︃∑︁

𝑘

𝜆𝑘𝐻𝑘𝑡𝑡*
)︃

=
∑︁

𝑘

𝜆𝑘tr(𝐻𝑘𝑡𝑡*) =
∑︁

𝑘

𝜆𝑘Pr[𝜆𝑘|𝑡𝑡*].

Observables often have a concrete physical interpretation, like energy, or spin. The
conditional expectation value of an observable corresponds to the expected size of the
associated physical quantity. Single-shot measurement results may differ from this
expectation.
3.3 2-point correlators
In quantum mechanics, tensor products arise naturally when studying joint quantum
systems. Every tensor factor corresponds to a microscopic quantum system. Resource
constraints typically prevent us from performing joint measurements on all 𝑁 systems
simultaneously. Instead, we may restrict our measurement effort to few select systems
and ignore (marginalize over) the rest. The following short-hand notation captures this
feature:

�̂�𝑗 :=𝐼𝑑1×𝑑1 ⊗ 𝐼𝑑2×𝑑2 · · · ⊗ 𝐼𝑑𝑗−1×𝑑𝑗−1 ⊗ 𝑂𝑗 ⊗ 𝐼𝑑𝑗+1×𝑑𝑗+1 ⊗ · · · ⊗ 𝐼𝑑𝑁 ×𝑑𝑁
,

�̂�𝑘 :=𝐼𝑑1×𝑑1 ⊗ 𝐼𝑑2×𝑑2 · · · ⊗ 𝐼𝑑𝑘−1×𝑑𝑘−1 ⊗ 𝑂𝑘 ⊗ 𝐼𝑑𝑘+1×𝑑𝑘+1 ⊗ · · · ⊗ 𝐼𝑑𝑁 ×𝑑𝑁

Each of these operators only acts non-trivially on the 𝑗-th and 𝑘-th tensor factor,
respectively. For 𝑗 ̸= 𝑘, the product �̂�𝑗�̂�𝑘 = �̂�𝑘�̂�𝑗 commutes and acts non-trivially on
both the 𝑗-th and the 𝑘-th tensor factor.

One of the most fascinating aspects of quantum mechanics is that measurements
necessarily affect the quantum system in question. An interaction – e.g. a measurement
– with the 𝑗-th system may affect the joint quantum state of all constituents. The
following definition provides a way to probe this effect:
Definition 3.2 (2-point correlator). For a tensor 𝑡 ∈ C𝑑1 ⊗ · · · ⊗ C𝑑𝑁 and operators 𝑂𝑗 ∈
C𝑑𝑗×𝑑𝑗 , 𝑂𝑘 ∈ C𝑑𝑘×𝑑𝑘 we define the 2-point correlator :

⟨�̂�𝑗�̂�𝑘⟩𝑡𝑡* − ⟨�̂�𝑗⟩𝑡𝑡*⟨�̂�𝑘⟩𝑡𝑡*

Two point correlators allow us to probe the spread of local perturbations within
the joint quantum system. Suppose that we poke the 𝑗-th system and are interested in
estimating how severely the 𝑘-th system is affected by this interaction. Then, ⟨�̂�𝑗�̂�𝑘⟩𝑡𝑡*

is a meaningful measure to address this question. It vanishes if and only if �̂�𝑗 has no
influence on the conditional expectation value ⟨�̂�𝑘⟩𝑡𝑡* . Otherwise, it is strictly larger
and upper-bounds the strength of correlations between the 𝑗-th and the 𝑘-th subsystem

6

3.4 Tensor trains and exponential decay of 2-point correlators

Theorem 3.3. Let 𝑡 ∈ C𝑑1 ⊗· · ·⊗C𝑑𝑁 be a tensor that admits a translationally invariant
TT representation with periodic boundary conditions that is also injective1. Then,
2-point correlators decay exponentially with distance:

⃒⃒
⃒⟨�̂�𝑗�̂�𝑘⟩𝑡𝑡* − ⟨�̂�𝑗⟩𝑡𝑡*⟨�̂�𝑘⟩𝑡𝑡*

⃒⃒
⃒ ≤ poly(𝑑, 𝐷, ‖𝑂𝑗‖∞, ‖𝑂𝑘‖∞)e−𝑐|𝑗−𝑘|. (2)

Note that this result is only meaningful if the bond dimension is moderate, i.e.
𝐷 = 𝐶𝑑poly(𝑁). Otherwise, the pre-factor could absorb any exponential decay in
distance. Before proving this result, it is worthwhile to point out a strong converse.

Theorem 3.4 (Brandao, Horodecki; 2015). Let 𝜌 = 𝑡𝑡*/⟨𝑡, 𝑡⟩ be a pure joint quantum
state of 𝑁 “identical” systems. Suppose that all 2-point correlators decay exponentially
in the sense of Eq. (2). Then, 𝑡 ∈ C𝑑 ⊗ · · · ⊗ C𝑑 is well-approximated by a TT with
polynomial bond dimension 𝐷 = 𝐶𝑑poly(𝑁).

3.5 Proof of Exponential decay of correlations in tensor trains

We will present a self-contained proof of Theorem 3.3 that is based on several simplifying
assumptions:

1. Translation invariance: 𝐴(𝑖) = 𝐴(𝑗) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁 . This also ensures
𝑑1 = · · · = 𝑑𝑁 = 𝑑 and 𝐷1 = · · · = 𝐷𝑁+1 = 𝐷.

2. Periodic boundary conditions: 𝐵 = I,

3. Thermodynamic limit: we will assume 𝑁 to be “very big” (think 𝑁 → ∞), but
refrain from a rigorous limit analysis.

We will also need a fourth assumption – injectivity. We will introduce it later, once we
need it. Also, we assume without loss that 𝑡 is normalized: ⟨𝑡, 𝑡⟩ = 1. For now, let us

1We refer to Definition 3.5 below for a precise definition of this term.

7

rewrite the expressions of interest in wiring notation:

⟨�̂�𝑗⟩𝑡𝑡* =
𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

𝑂𝑗 ,

⟨�̂�𝑗⟩𝑡𝑡* =
𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
𝑂𝑘

, (3)

⟨�̂�𝑗�̂�𝑘⟩𝑡𝑡* =
𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

𝐴

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

𝑂𝑗 𝑂𝑘
(4)

Cyclicity of the trace allows us to assume without loss 𝑗 < 𝑘 – as indicated in the
diagrams above. If we read these expressions from left to right, they reveal a lot of
structure. We are dealing with traces of 𝑁 operators that act on C𝐷 ⊗ C𝐷. What is
more, translation invariance ensures that almost all of them are the same. This central
building block is called a transfer matrix:

𝑇 =
𝐴

𝐴

=
𝑑∑︁

𝑖=1
𝐴::𝑖 ⊗ 𝐴*

::𝑖 ∈ ℒ
(︁
C𝐷 ⊗ C𝐷

)︁

All but two (one) constituents are such transfer matrices. The remaining two operators
are

𝑇𝑂𝑗 =
𝐴

𝐴

𝑂𝑗 ∈ ℒ
(︁
C𝐷 ⊗ C𝐷

)︁
and 𝑇𝑂𝑗 =

𝐴

𝐴

𝑂𝑘
.

This new notation considerably simplifies the conditional expectation values. Inserting
these matrix definitions into the wiring diagram expressions readily yields

⟨𝑂𝑗⟩𝑡𝑡* =tr
(︁
𝑇 𝑗−1𝑇𝑂𝑗 𝑇 𝑁−𝑗−1

)︁
= tr

(︁
𝑇 𝑁−1𝑇𝑂𝑗

)︁
,

⟨𝑂𝑘⟩𝑡𝑡* =tr
(︁
𝑇 𝑘−1𝑇𝑂𝑘

𝑇 𝑁−𝑘−1
)︁

= tr
(︁
𝑇 𝑁−1𝑇𝑂𝑘

)︁
,

⟨�̂�𝑗�̂�𝑘⟩𝑡𝑡* =tr
(︁
𝑇 𝑗−1𝑇𝑂𝑗 𝑇 𝑘−𝑗−1𝑇𝑂𝑘

𝑇 𝑁−𝑘−1
)︁

= tr
(︁
𝑇 𝑁−2−(𝑘−𝑗)𝑇𝑂𝑗 𝑇 𝑘−𝑗−1𝑇𝑂𝑘

)︁
.

8

Here, we have also used cyclicity of the trace to further simplify these expressions. We
are now ready to phrase our fourth assumption:

4 Injectivity: The transfer matrix 𝑇 is diagonalizable and it has a unique largest
eigenvalue of one. All other eigenvalues are smaller in modulus.

The assumption that 𝜆max = 1 readily follows from normalization. The power method
demands for 𝑁 → ∞ (thermodynamic limit)

1 = ⟨𝑡, 𝑡⟩ = tr
(︁
𝑇 𝑁

)︁
≃ 𝜆𝑁

max which ensures 𝜆max = 1.

In contrast, uniqueness of the largest eigenvalue is a more severe demand that is essential
for exponential decay of correlations.

Definition 3.5. A translationally invariant TT is injective if the transfer matrix is diago-
nalizable and has a unique largest eigenvalue.

Apply an eigenvalue decomposition 𝑇 = 𝑊 𝐷𝑊 −1, where 𝐷 = diag(𝜆max, 𝜆2, . . . , 𝜆𝐷2)
and |𝜆𝑖| < 𝜆max = 1 for all 2 ≤ 𝑖 ≤ 𝐷2. We can again imply the power method to
conclude

lim
𝑁→∞

𝑇 𝑁 = lim
𝑁→∞

𝑊 𝐷𝑁 𝑊 −1 = 𝑊 lim
𝑁→∞

diag
(︁
1𝑁 , 𝜆𝑁

2 , . . . , 𝜆𝑁
𝐷2

)︁
𝑊 −1

=𝑊 diag(1, 0, . . . , 0)𝑊 −1 = 𝑤𝑙𝑤
*
𝑟 ,

where we have implicitly defined 𝑤𝑙 = 𝑊 𝑒1 ∈ C𝐷 and 𝑤𝑟 = (𝑊 −1)*𝑒1 ∈ C𝑑. Injectivity
together with the thermodynamic limit ensure that high powers of the transfer matrix
with itself approach an outer product.

This insight allows us to considerably simplify the 2-point correlator:

⟨�̂�𝑗�̂�𝑘⟩𝑡𝑡* − ⟨�̂�𝑗⟩𝑡𝑡*⟨�̂�𝑘⟩𝑡𝑡* =tr
(︁
𝑇 𝑁−2−(𝑘−𝑗)𝑇𝑂𝑗 𝑇 𝑘−𝑗−1𝑇𝑂𝑘

)︁
− tr

(︁
𝑇 𝑁−1𝑇𝑂𝑗

)︁
tr
(︁
𝑇 𝑁−1𝑇𝑂𝑘

)︁

≃tr
(︁
𝑇 ∞𝑇𝑂𝑗 𝑇 𝑘−𝑗−1𝑇𝑂𝑘

)︁
− tr

(︁
𝑇 ∞𝑇𝑂𝑗

)︁
tr(𝑇 ∞𝑇𝑂𝑘

)

=𝑤*
𝑟𝑇𝑂𝑗 𝑇 𝑘−𝑗−1𝑇𝑂𝑘

𝑤𝑙 − 𝑤*
𝑟𝑇𝑂𝑗 𝑤𝑙𝑤

*
𝑟𝑇𝑂𝑘

𝑤𝑙

=𝑤*
𝑟𝑇𝑂𝑗 𝑇 𝑘−𝑗−1𝑇𝑂𝑘

𝑤𝑙 − 𝑤*
𝑟𝑇𝑂𝑗 𝑇 ∞𝑇𝑂𝑘

𝑤𝑙

=𝑤*
𝑟𝑇𝑂𝑗

(︁
𝑇 𝑘−𝑗−1 − 𝑇 ∞

)︁
𝑇𝑂𝑘

𝑤𝑙.

We are now almost done. Exponential decay readily follows from the following observa-
tion:

𝑇 𝑘−𝑗−1 − 𝑇 ∞ =𝑊
(︁
𝐷𝑘−𝑗−1 − 𝐷∞

)︁
𝑊 −1 = 𝑊 diag

(︁
1𝑘−𝑗−1 − 1, 𝜆𝑘−𝑗−1

2 , . . . , 𝜆𝑘−𝑗−1
𝐷2

)︁
𝑊 −1

=𝑊 diag
(︁
0, 𝜆𝑘−𝑗−1

2 , . . . , 𝜆𝑘−𝑗−1
𝐷2

)︁
𝑊 −1.

Since |𝜆𝑖| < 1 for all 2 ≤ 𝑖 ≤ 𝐷2, this matrix difference decays exponentially in any
matrix norm. A quick look at the expression above highlights that control of the

9

operator norm suffices:
⃒⃒
⃒⟨�̂�𝑗�̂�𝑘⟩𝑡𝑡* − ⟨�̂�𝑗⟩𝑡𝑡*⟨�̂�𝑘⟩𝑡𝑡*

⃒⃒
⃒ ≤
⃒⃒
⃒𝑒*

1𝑊 −1𝑇𝑂𝑗 𝑊
(︁
𝐷𝑘−𝑗−1 − 𝐷∞

)︁
𝑊 −1𝑇𝑂𝑘

𝑊 𝑒1
⃒⃒
⃒

≤‖𝑊 −1𝑇𝑂𝑗 𝑊 𝑒1‖ℓ2‖𝑊 −1𝑇𝑂𝑘
𝑊 𝑒1‖ℓ2

⃦⃦
⃦𝐷𝑘−𝑗−1 − 𝐷∞

⃦⃦
⃦

∞
≤poly(𝐷, 𝑑, ‖𝑂𝑗‖∞, ‖𝑂𝑘‖∞) max

2≤𝑖≤𝐷2
|𝜆𝑖|𝑘−𝑗−1.

This establishes the relation advertised in Theorem 3.3.

Lecture 17: Tensor train algorithms (DMRG lite)

Scribe: Richard Kueng

ACM 270-1, Spring 2019
Richard Kueng & Joel Tropp
May 29, 2019

1 Agenda
1. Problem statement: compute ground state energies of joint quantum systems

2. Concrete examples

3. Tensor train ansatz

4. Matrix product operators

5. Alternate tensor train minimization (DMRG1)

6. Extension (DMRG2) and rigorous convergence guarantees

2 Problem statement: compute ground state energies of joint quan-
tum systems

2.1 Recapitulation: quantum states

Consider the set of joint quantum states on 𝑁 identical systems – each with local
dimension 𝑑:

S
(︁
C𝑑)⊗𝑁

)︁
=
{︁

𝜌 ∈ ℒ(𝐻⊗𝑁) : 𝜌 ⪰ 0, (I, 𝜌) = 1
}︁

.

Here, (𝑋, 𝑌) = tr(𝑋𝑌 denotes the Frobenius inner product on ℒ((C𝑑)⊗𝑁) This is a
convex subset of the (real-valued) space of 𝑑𝑁 × 𝑑𝑁 hermitian matrices. The extreme
points of this set correspond to pure states:

𝜌 = 𝑢𝑢* with 𝑢 ∈ (C𝑑)⊗𝑁 , ⟨𝑢, 𝑢⟩ = 1.

A measurement is a resolution of the identity:

𝐻𝜆1 , . . . , 𝐻𝜆𝑚
: 𝐻𝜆𝑘

⪰ 0,
𝑚∑︁

𝑘=1
𝐻𝜆𝑘

= I.

Born’s rule asserts
Pr[𝜆𝑘|𝜌] = (𝐻𝜆𝑘

, 𝜌)

An important sub-class of measurements are projective measurements: Each 𝐻𝜆𝑘
is

an orthogonal projection 𝑃𝜆𝑘
. This ensures that the psd constraint is met by default.

Moreover, a set of orthogonal projectors forms a resolution of the identity if and only
if the projectors project onto mutually orthogonal subspaces whose union spans all of
(C𝑑)⊗𝑁 .

2

2.2 Quantum mechanical observables and the ground state problem

Let 𝑃𝜆1 , . . . , 𝑃𝜆𝑚 be a projective quantum measurement. Suppose that the measure-
ment outcomes are real-valued numbers (e.g. energy, or spin). Then, we can combine
measurement and outcomes to a single Hermitian matrix:

𝑂 =
𝑚∑︁

𝑘=1
𝜆𝑘𝑃𝜆𝑘

.

This object is called an observable. The associated measurements arise from a spectral
decomposition. Note that

⟨𝑂⟩𝜌 = (𝑂, 𝜌) =
𝑚∑︁

𝑘=1
𝜆𝑘(𝑃𝜆𝑘

, 𝜌) =
𝑚∑︁

𝑘=1
𝜆𝑘Pr[𝜆𝑘|𝜌] = E𝜌[𝜆].

This conditional expectation value measures the expected physical quantity achieved by
a quantum state 𝜌. Arguably, the most important physical quantity of any system is
energy.

Definition 2.1. The observable associated with energy is caled a Hamiltonian and is
denoted by 𝐻 ∈ ℒ((C𝑑)⊗𝑁). Its smallest eigenvalue 𝜆min is called the ground state
energy.

2.3 The ground state problem

One of the most fundamental questions in quantum physics and chemistry is: Given a
Hamiltonian 𝐻 , find the smallest expected energy achievable and – ideally – a quantum
state that achieves this minimal value.

Definition 2.2. Let 𝐻 be a Hamiltonian. A quantum state 𝜌♯ is said to be in the ground
state if ⟨𝐻⟩𝜌♯

= min𝜌⟨𝐻⟩𝜌.

The following immediate consequence of convexity allows for substantially reducing
the complexity of the ground state problem.

Lemma 2.3. For any Hamiltonian 𝐻, there always exists a pure state 𝜌 = 𝑢𝑢* that
achieves the ground state energy: ⟨𝐻⟩𝑢𝑢* = min𝜌⟨𝐻⟩𝜌.

We note in passing that this ground state need not be unique. There might be other
pure states that achieve the same energy in expectation. Linearity then implies that
any convex mixture of such pure ground states is also a ground state.

Proof. Fix 𝐻 and note that the function (𝐻, 𝜌) is linear in 𝜌 and therefore also concave.
We minimize this concave function over the set of all quantum states which is convex.
A fundamental result from convex optimization states that a concave function achieves
its minimum over a convex set at the boundary. This boundary corresponds to the set
of all pure quantum states.

3

Problem statement Let 𝐻 ∈ ℒ((C𝑑)⊗𝑁) be a Hamiltonian. The ground state problem
corresponds to solving the following Rayleigh quotient:

minimize
𝑢∈(C𝑑)⊗𝑁

⟨𝑢, 𝐻𝑢⟩
⟨𝑢, 𝑢⟩ .

This problem is not difficult in its own right. A “simple” eigenvalue decomposition of 𝐻
would readily solve it. The challenge stems from the curse of dimensionality associated
with tensor product spaces: 𝑢 lives in a 𝑑𝑁 dimensional space. Even for moderate 𝑁 ,
this exponential growth renders a full eigenvalue decomposition of 𝐻 impractical. The
associated runtime would be 𝒪

(︁
𝑑3𝑁

)︁
.

3 The ground state problem for spin chains
Stated as it is, the ground state problem might seem strange at first. The glaring difficulty
stems from very large dimensions. But how do such high dimensional Hamiltonians–
very large-dimensional hermitian matrix – arise in the first place? This is a feature
of many body physics, and – more general – the study of emergent phenomena (e.g.
swarm behavior in certain animal species). Already very simple, structured interactions
between 𝑁 players can give rise to a very intricate global interaction patterns. This
is in particular true for interactions among 𝑁 simple quantum mechanical systems.
Understanding such phenomena may help to explain effects that we can measure in the
lab. Recall the following short-hand notation for operators on ℒ((C𝑑)⊗𝑁):

�̂�𝑗 = I⊗(𝑗−1) ⊗ 𝑂 ⊗ I⊗(𝑁−𝑗−1) for 𝑂 ∈ ℒ(C𝑑), 1 ≤ 𝑗 ≤ 𝑁.

Also, recall the Pauli matrices

𝑋 =
(︃

0 1
1 0

)︃
, 𝑌 =

(︃
0 −𝑖
𝑖 0

)︃
, 𝑍 =

(︃
1 0
0 −1

)︃

The spin is a 2-dimensional degree of freedom and loosely resembles a magnetic moment
(think of an electric current that passes through a closed ring). The Pauli matrices play
a crucial role in the study of spin. They correspond to observables that measure the
orientation of the spin along the three different axes in space.

Now, suppose that we have prepared 𝑁 quantum mechanical systems along a line.
And we have isolated them sufficiently from the environment and each other such that
only their spin degree of freedom matters. This allows us to accurately approximate
each system with a 2-dimensional quantum state – the spin state. The joint system
is described by an enormous density matrix in ℒ((C2)⊗𝑁). Since spin resembles a
magnetic moment, the individual systems are affected by external electric/magnetic
fields and can also interact with each other. Physicists have come up with various toy
models that reflect these types of interactions. The result is typically a big Hamiltonian

4

𝐻 that is comprised of many simple terms:

↑↓ ↑↓ ↑↓ ↑↓ ↑↓

external field

nearest neighbor coupling

.

For each individual particle, the energy contributions are very simple. They feature spin
interactions among nearest neighbors and a contribution from an external field. Since
energy is additive, the full Hamiltonian then corresponds to a sum of 𝑁 simple terms:

𝐻 = −
𝑁−1∑︁

𝑖=1

(︁
�̂�𝑖�̂�𝑖+1 + �̂�𝑖

)︁
∈ ℒ

(︁
(C2)⊗𝑁

)︁
.

Example 3.1 (Ising model). The Ising model is arguably the simplest interesting spin chain
model. The nearest neighbor interactions are mediated by Pauli-𝑋 matrices, while the
external (magnetic) field contributes a Pauli-𝑍 term each:

𝐻Ising = −𝐽
𝑁−1∑︁

𝑖=1
�̂�𝑖�̂�𝑖+1 − ℎ

𝑁∑︁

𝑖=1
𝑍𝑖. (1)

The parameters 𝐽 (coupling strength) and ℎ (external field strengths) are the parameters
of the model. Ising actually could provide an analytic solution to this ground state
problem. The Ising model can be readily extended to higher dimensions (e.g. lattices).
The higher dimensional Ising ground state problem can be solved efficiently (i.e. in
time polynomial in 𝑁) for for planar graphs (e.g. a 2D lattice), but is NP-complete for
non-planar graphs (e.g. a lattice in 3D).

Example 3.2 (Heisenberg model). The Heisenberg model expands on Ising by considering
nearest neighbor interactions along all possible spin directions:

𝐻Heisenberg = −𝐽𝑋

𝑁−1∑︁

𝑖=1
�̂�𝑖�̂�𝑖+1 − 𝐽𝑌

𝑁−1∑︁

𝑖=1
𝑌𝑖𝑌𝑖+1 − 𝐽𝑍

𝑁−1∑︁

𝑖=1
�̂�𝑖�̂�𝑖+1 − ℎ

𝑁∑︁

𝑖=1
𝑍𝑖. (2)

This quantum mechanical model is used in the study of critical points and phase
transitions of magnetic systems. Note that the Ising model is a specification of the
Heisenberg model, where 𝐽𝑌 = 𝐽𝑍 = 0.

4 Tensor Train Ansatz for solving ground state problems
4.1 Recapitulation: tensor trains

Every tensor 𝑡 ∈ (C𝑑)⊗𝑁 can be expanded as a tensor train. Each “wagon” corresponds
to an order-three tensor 𝐴(𝑘) ∈ C𝐷𝑘 ⊗ C𝐷𝑘+1 ⊗ C𝑑 that is typically cut into frontal
slices:

𝐴
(𝑘)
𝑖 = 𝐴

(𝑘)
::𝑖 ∈ C𝐷𝑖×𝐷𝑖+1 for 1 ≤ 𝑖 ≤ 𝑑.

5

These local tensors characterize the tensor 𝑡 by means of the following expansion
formula:

𝑡 =
𝑑∑︁

𝑖1=1,...,𝑖𝑁 =1
tr
(︁
𝐴

(1)
𝑖1 𝐴

(2)
𝑖2 · · · 𝐴

(𝑁)
𝑖𝑁

)︁
𝑒𝑖1 ⊗ 𝑒𝑖2 · · · ⊗ 𝑒𝑖𝑁 .

The motivation for this representation (and its name) becomes exceptionally clear in
wiring notation:

𝑡 =

C𝑑

C𝐷

C𝑑

C𝐷

C𝑑

C𝐷

C𝑑

C𝐷

𝐴(1) 𝐴(2) 𝐴(𝑁)𝐴(𝑘)

Remark 4.1. This is a slight modification of the TT framework introduced in previous
lectures. The virtual index does not wrap around. In turn, the boundary tensors
𝐴(1) and 𝐴(2) have a qualitatively different flavour from the other wagons: they are
only order-two tensors. Although highly relevant in practice, we will ignore boundary
effects/representations and entirely focus on tensors 𝐴(𝑖) in the center of the train.

Tensor trains approximate arbitrary tensors. They mediate correlations between
individual factors by exploiting an additional degree of freedom that connects the
wagons on a virtual level. The dimension of this auxiliar space 𝐷 is called the bond
dimension.

A large value of 𝐷 – exponentially large in 𝑁 – greatly increases the expressiveness of
the TT model. Every tensor can be represented by a TT with bond dimension 𝐷 ≃ 𝑑𝑁/2.
Small values of 𝐷 – polynomially large in 𝑁 – facilitate actual tensor computations at
the cost of expressiveness. Varying the parameter 𝐷 interpolates between both regimes.

Fact 4.2 (Gauge transformations). Tensor train representations are never unique. We
can apply arbitrary invertible linear transformations along the virtual degrees of freedom.
This allows us to convert a given TT into either a left- or a right- normal form:

𝐴(𝑘)

𝐴(𝑘)

= or
𝐴(𝑘)

𝐴(𝑘)

= .

4.2 Tensor train ansatz for the ground state problem

Recall the ground state problem for a given Hamiltonian 𝐻 ∈ ℒ((C𝑑)⊗𝑁):

𝜆min = minimize
𝑢∈(C𝑑)⊗𝑁

⟨𝑢, 𝐻𝑢⟩
⟨𝑢, 𝑢⟩ .

The challenge in solving this problem does stem from the fact that (C𝑑)⊗𝑁 is a huge
space with dimension 𝑑𝑁 . A natural ansatz to approximate this problem is to restrict

6

the regime over which we optimize. Tensor trains with fixed bond dimension (b.d.) 𝐷
are a natural candidate for such a restricted optimization:

�̃�min(𝐷) = minimize
𝑡 is TT with b.d. 𝐷

⟨𝑡, 𝐻𝑡⟩
⟨𝑡, 𝑡⟩ . (3)

This is an optimization over a strict subset of all tensors. What is more, a moment of
thought reveals that TT with bond dimension 𝐷 are included in the set of TT with
bond dimension 𝐷 + 1:

TT(1) ⊆ TT(2) ⊆ · · · ⊆ TT(𝐷) ⊆ · · · ⊆ TT(𝑑𝑁/2) = (C𝑑)⊗𝑁 .

In turn
�̃�min(1) ≥ �̃�min(2) ≥ · · · ≥ �̃�max(𝐷) ≥ · · · ≥ �̃�min(𝑑𝑁/2) = 𝜆min,

where the last equality follows from complete expressiveness of TT for sufficiently high
bond dimension.

Although simple, this is a profound insight. While varying the bond dimension, we
obtain ever more accurate approximations of the true ground state. However, there is a
trade-off. The runtime of the underlying algorithm will scale polynomially in 𝐷.
4.3 Problem reformulation: Matrix product operators
It is instructive to rewrite the objective function in (3) in wiring formalism:

⟨𝑡, 𝐻𝑡⟩
⟨𝑡, 𝑡⟩ =

𝐴(𝑘)

𝐴(𝑘)

𝐴(𝑁)

𝐴(𝑁)

𝐴(1)

𝐴(1)

𝐻

𝐴(𝑘)

𝐴(𝑘)

𝐴(𝑁)

𝐴(𝑁)

𝐴(1)

𝐴(1)

The denominator reveals a lot of structure. In particular, its form already suggests
the potential benefits of transforming the individual 𝐴(𝑘)’s into a suitable normal form.
The big Hamiltonian in the enumerator, however, breaks this nice sequential structure.
It seems highly advisable to decompose it further into a tensor expression that mimics
the structure of tensor trains.

Definition 4.3 (Matrix product operator). A matrix product operator (MPO) is fully char-
acterized by collection of 𝑁 order four tensors 𝑀 (𝑘) ∈ C𝑑 ⊗ C𝑑 ⊗ C𝐷′ ⊗ C𝐷′ (think
operator-valued matrices of size 𝐷′ × 𝐷′) and two vectors 𝑣𝑙, 𝑣𝑟 ∈ C𝐷′ :

𝑂

C𝑑

C𝑑

C𝑑

C𝑑

= 𝑀 (𝑗) 𝑀 (𝑁)𝑀 (1)

C𝑑

C𝑑

C𝑑

C𝑑

C𝑑

C𝑑

C𝐷′C𝐷′

𝑣𝑙 𝑣𝑟 ∈ ℒ
(︁
C𝑑)⊗𝑁

)︁

7

Every operator acting on a tensor space may be represented as a MPO. The
decomposition may be achieved in a fashion similar to the derivation of tensor trains.
However, in general, the bond dimension must scale exponentially with the number of
tensor factors: 𝐷′ ≃ 𝑑𝑁 is necessary to accurately represent a generic operator.

However, the Hamiltonians we consider for the ground state problem are typically
very far from being generic. Their simple structure manifests itself in a tiny bond
dimension.

Example 4.4 (MPO for the Ising Hamiltonian). The Ising Hamiltonian 𝐻Ising ∈ ℒ((C2)⊗𝑁)
(1) is fully characterized by a single MPO with bond dimension 𝐷′ = 3:

𝑀 (𝑘) =

⎛
⎜⎝

I 0 0
𝑋 0 0

−ℎ𝑋 −𝐽𝑋 I

⎞
⎟⎠ and 𝑣𝑙 =

⎛
⎜⎝

0
0
1

⎞
⎟⎠, 𝑣𝑟 =

⎛
⎜⎝

1
0
0

⎞
⎟⎠.

Example 4.5 (MPO for the Heisenberg Hamiltonian). The Heisenberg Hamiltonian 𝐻Heisenberg ∈
ℒ((C2)⊗𝑁) (2) is fully characterized by a single MPO with bond dimension 𝐷′ = 5:

⎛
⎜⎜⎜⎜⎜⎝

I 0 0 0 0
𝑋 0 0 0 0
𝑌 0 0 0 0
𝑍 0 0 0 0

−ℎ𝑍 −𝐽𝑋𝑋 −𝐽𝑌 𝑌 −𝐽𝑍𝑍 I

⎞
⎟⎟⎟⎟⎟⎠

and 𝑣𝑙 =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎠

, 𝑣𝑟 =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠

.

5 DMRG lite
5.1 Overview
We are now ready to discuss a simplified version of DMRG. The task is to approximately
solve the ground state problem for a big Hamiltonian𝐻 ∈ ℒ

(︁
(C𝑑)⊗𝑁

)︁
. We will do a TT

ansatz and use an alternating least squares heuristics to individually optimize 𝐴(𝑘) by
keeping all other tensors fixed. One iteration consists of 𝑁 independent optimizations –
one for each tensor train wagon – and results in a global update of the TT approximation
to the ground state. Repeating this “sweep” many times heuristically boosts convergence.
The problem parameters are:

∙ local physical dimension 𝑑: typically this is small, e.g. 𝑑 = 2 for spins.
∙ number of quantum systems 𝑁 : we suppose that this number is very large.
∙ bond dimension 𝐷′ of the expansion of 𝐻 as a matrix product operator: this

is fixed and typically small, e.g. 𝐷 = 3 for the Ising model, or 𝐷′ = 5 for the
Heisenberg model.

∙ bond dimension 𝐷: this is a free parameter that we get to choose. We suppose
that it scales moderately in the problem size: 𝐷 = poly(𝑁).

Our ALS-type algorithm is based on a nifty sub-routine to individually optimize
tensor 𝐴(𝑘) individually. Importantly, each optimization can be achieved in runtime

8

polynomial in 𝑑, 𝐷′, 𝑁 and the model parameter 𝐷. This is efficient, as long as we do
not choose 𝐷 to be too large. This results in a total runtime of 𝑁 = poly(𝑑, 𝐷′, 𝑁, 𝐷) =
poly(𝑑, 𝐷′, 𝑁, 𝐷) for each iteration. This polynomial cost is cheap when compared to
the exponentially large problem dimension 𝑑𝑁 . This gain allows us to repeat these
sequential updates many times to – hopefully – boost convergence to the the ground
state energy.
5.2 ALS subroutine

We focus on optimizing one tensor 𝐴(𝑘) while keeping all other elements in the TT
fixed. Next, we insert an MPO representation of the Hamiltonian 𝐻 in the enumerator
of the objective energy function:

⟨𝑡, 𝐻𝑡⟩ =

𝐷

𝐷′

𝐷

𝑑

𝑑

𝐴(𝑘)

𝐴(𝑘)

.

The MPO formalism ensures that this wiring diagram now looks very similar to the
denominator:

⟨𝑡, 𝑡⟩ =

𝐷

𝐷

𝑑

𝐴(𝑘)

𝐴(𝑘)

.

We can now contract everything to the left of the 𝐴(𝑘) and everything to the right to
get an effective environment tensor:

⟨𝑡, 𝐻𝑡⟩ =
𝐴(𝑘)

𝐴(𝑘)

𝐻
(𝑘)
eff

=

𝑎

𝑎

�̃�
(𝑘)
eff

= ⟨𝑎, �̃�
(𝑘)
eff 𝑎⟩, 𝑎 = vec

(︁
𝐴(𝑘)

)︁
∈ C𝑑𝐷2

.

The last equation follows from vectorization and a re-arrangement of the tensor factors
in 𝐻

(𝑘)
eff . It is easy to check that the runtime for constracting 𝐻

(𝑘)
eff scales polynomially

in 𝐷, 𝐷′, 𝑑 and linearly in 𝑁 .
At a comparable cost, we can construct a similar environment tensor for the

denominator:

⟨𝑡, 𝑡⟩ =
𝐴(𝑘)

𝐴(𝑘)

𝐸
(𝑘)
𝑟 𝐸

(𝑘)
𝑡

=

𝑎

𝑎

�̃�
(𝑘)
𝑙 �̃�

(𝑘)
𝑟

= ⟨𝑎, �̃�
(𝑘)
𝑙 ⊗ I�̃�(𝑘)

𝑟 𝑎⟩.

A smart normal form convention in the TT can further simplify this expression. If all
tensors 𝐴(𝑗) left from 𝐴(𝑘) (1 ≤ 𝑗 < 𝑘) are in left-normal form and all tensors right

9

from 𝐴(𝑘) (𝑘 < 𝑗 ≤ 𝑁) are in right-normal form, the effective tensors become trivial1:
�̃�

(𝑘)
𝑙 = I and �̃�

(𝑘)
𝑟 = I. Under these assumptions and reformulations, the optimization

problem exactly resembles a Raiyleigh quotient:

minimize
𝐴(𝑘)

⟨𝑡, 𝐻𝑡⟩
⟨𝑡, 𝑡⟩ = minimize

𝑎∈C𝐷2𝑑

⟨𝑎, �̃�
(𝑘)
eff 𝑎⟩

⟨𝑎, 𝑎⟩ .

It can be solved by computing the eigenvalue decomposition of �̃�
(𝑘)
eff ∈ ℒ

(︁
C𝐷2𝑑

)︁
,

extracting the smallest eigenvector 𝑎♯ and re-shaping it into a tensor. The runtime of
a dense eigenvalue decomposition is of order 𝒪(︀𝑑𝐷2)︀. A subsequent conversion of the
updated 𝐴(𝑘) into left- or right normal form comes at a similar cost.
5.3 Extensions and rigorous results
The above sweeping procedure is often called DMRG1. It is an iterative procedure,
where the individual tensors in a TT representation are updated sequentially. The bond
dimension 𝐷 is a proper input to the heuristic – there is no easy way to change it within
the algorithm.

This can be a severe drawback in practice. Once we start with a certain bond
dimension value 𝐷, we must stick to it. DMRG2 is a conceptually simple refinement of
DMRG1 that allows to adjust the bond dimension dynamically while the algorithm is
running. The main idea is to group two tensors together and treat them as a single
tensor:

𝐴(𝑘) 𝐴(𝑘+1) = �̃�(𝑘,𝑘+1) .

Subsequently, apply DMRG1 to this coarse-grained tensor network. Once an update for
�̃�(𝑘,𝑘+1) is obtained, we can subsequently apply a singular value decomposition to pull
the two original tensors apart. The decay of the spectrum associated with this SVD
provides us with valuable guidance on how to adjust bond dimensions dynamically.

Last but not least, we want to emphasize that a comparatively recent result provides
a rigorous underpinning for tensor train approaches to solve the ground state problem.
It applies to an iterative algorithm, that is similar in spirit to DMRG, but the details
are somewhat different. The associated rigorous convergence guarantee applies to local
Hamiltonians 𝐻 of 1D-chains that have a spectral gap:

𝜆min < 𝜆𝑘 − 𝜀 for all 𝜆𝑘 ̸= 𝜆min and 𝜀 > 0 is constant.

Theorem 5.1 (Landau, Vazirani, Vidick; 2013). Let 𝐻 be a local Hamiltonian of a 1D
quantum system with a constant spectral gap. Then, there is a tensor train algorithm
that accurately2 approximates both the ground state (as a tensor train) and the ground
state energy and runs in polynomial time.

1Such a smart reformulation is achievable in practice: Start the first iteration by moving from left
to right and convert all updated tensors into left normal form. Start the second iteration from right
to left and convert all updated tensors into right normal form. Continue this sweeping procedure for
subsequent iterations

2The accuracy is inverse polynomial in the problem parameters.

Homework I
hand-in date: April 29, 2019

ACM 270-1, Spring 2019
Richard Kueng and Joel Tropp
April 15, 2019

1 Extreme points of classical and quantum probability distributions
Fix a vector space V and let 𝒦 ⊆ V be a convex set.

Definition 1.1 (extreme point). Let 𝐶 ⊆ V be a convex set. A point 𝑥 ∈ 𝐶 is extreme if
𝑥 = 1

2(𝑦 + 𝑧) for 𝑦, 𝑧 ∈ 𝐶 implies 𝑦 = 𝑧 = 𝑥.

Definition 1.2 (exposed point). Let 𝐶 ⊂ V be a convex set. A point 𝑥 ∈ 𝐶 is exposed if
there exists a linear functional 𝜙 : 𝐶 → R such that 𝜙(𝑥) = 1 and 𝜙(𝑦) < 1 for any
other point 𝑦 ∈ 𝐶.

1. Set V = R𝑛 and consider the convex set Δ𝑑−1(R𝑑) = {𝑥 ∈ R𝑛 : 𝑥 ≥ 0, ⟨1, 𝑥⟩ = 1}.
Determine all extreme points of Δ𝑑−1(R𝑑).

2. Show that every extreme point of Δ𝑑−1(R𝑑) is also exposed.
3. Show that Δ𝑑−1(R𝑑) is the convex hull of all extreme points.

4. Set V = H𝑑 and consider the convex set S(H𝑑) =
{︁

𝑋 ∈ H𝑑 : 𝑋 ⪰ 0, (I, 𝑋) = 1
}︁

.
Determine all extreme points of S(H𝑑).

5. Show that every extreme point of S(H𝑑) is also exposed.
6. Show that S(H𝑑) is the convex hull of all extreme points.

Definition 1.3. A density matrix 𝜌 is called a pure (quantum) state if it is an extreme
point of 𝒮(H𝑑).

Pure states are the quantum mechanical analogue of deterministic classical proba-
bility distributions.

7. Let 𝜌 ∈ S(H𝑑) be a pure quantum state. Find a (finite) quantum measurement
{𝐻𝑎 : 𝑎 ∈ 𝐴} ⊂ H𝑑 for which the measurement outcomes are deterministic, i.e.
Pr[𝑎|𝜌] = 1 for one 𝑎 ∈ 𝐴 and Pr[𝑎|𝜌] = 0 else.

8. Let 𝜌 ∈ S(H𝑑) be a pure quantum state. Find a (finite) quantum measurement
{𝐻𝑎 : 𝑎 ∈ 𝐴} ⊂ H𝑑 for which the measurement outcomes are fully random, i.e.
Pr[𝑎|𝜌] = 1/|𝐴| for all 𝑎 ∈ 𝐴.

2 Symmetric and Antisymmetric tensors
Let 𝐻 be a 𝑑-dimensional vector space with inner product ⟨·, ·⟩ and designated orthonor-
mal basis 𝑒1, . . . , 𝑒𝑑. We associate the group of permutations 𝒮𝑘 among 𝑘 parties with
the following operators on H⊗𝑘:

𝑊𝜋𝑒1 ⊗ · · · ⊗ 𝑒𝑘 = 𝑒𝜋−1(1) ⊗ · · · ⊗ 𝑒𝜋−1(𝑑)

2

and linearly extended to 𝐻⊗𝑘. Define

𝑃∨𝑘 = 1
𝑘!

∑︁

𝜋∈𝒮𝑘

𝑊𝜋 and 𝑃∧𝑘 = 1
𝑘!

∑︁

𝜋∈𝒮𝑘

sign(𝜋)𝑊𝜋.

1. Verify that the map 𝜋 → 𝑊𝜋 defines a unitary representation of the permutation
group, i.e. each 𝑊𝜋 ∈ ℒ(𝐻⊗𝑘) is a unitary operator and the map is a group
homomorphism: 𝑊𝜋∘𝜎 = 𝑊𝜋𝑊𝜎 for all 𝜋, 𝜎 ∈ 𝒮𝑘.

2. Find a basis for the totally symmetric subspace ⋁︀𝑘 = range(𝑃∨𝑘) ⊂ 𝐻⊗𝑘 that is
orthonormal with respect to the extended inner product on 𝐻⊗𝑘.

3. Find a basis for the totally antisymmetric subspace ⋀︀𝑘 = range(𝑃∧𝑘) ⊂ 𝐻⊗𝑘 that
is orthonormal with respect to the extended inner product on 𝐻⊗𝑘.

4. Determine dim
(︁⋁︀𝑘

)︁
and dim

(︁⋀︀𝑘
)︁
.

5. Let 𝐴 = [𝑎𝑖𝑗]𝑑𝑖,𝑗=1 be a matrix associated to an operator in ℒ(𝐻). Verify the
Leibniz formulae

det(𝐴) :=𝑑!⟨𝑒1 ⊗ · · · 𝑒𝑑, 𝑃∧𝑑𝐴⊗𝑑𝑃∧𝑑𝑒1 ⊗ · · · ⊗ 𝑒𝑑⟩ =
∑︁

𝜋∈𝒮𝑑

sign(𝜋)
𝑑∏︁

𝑖=1
𝑎𝑖,𝜋(𝑖),

perm(𝐴) :=𝑑!⟨𝑒1 ⊗ · · · 𝑒𝑑, 𝑃∨𝑑𝐴⊗𝑑𝑃∨𝑑𝑒1 ⊗ · · · ⊗ 𝑒𝑑⟩ =
∑︁

𝜋∈𝒮𝑑

𝑑∏︁

𝑖=1
𝑎𝑖,𝜋(𝑖)

6. (optional) Prove Schur’s theorem: Let 𝐴 ∈ ℒ(𝐻) be positive semidefinite. Then

perm(𝐴) ≥ det(𝐴).

Hint: Every positive semidefinite matrix admits a Cholesky decomposition: 𝐴 =
𝐿𝐿*, where 𝐿 is lower-triangular.

3 Wiring computations with implications for quantum information
theory

Let (𝐻, ⟨·, ·⟩) be a 𝑑-dimensional inner product space with designated orthonormal
basis 𝑒1, . . . , 𝑒𝑑. The outer products 𝐸𝑖𝑗 = 𝑒𝑖𝑒

𝑇
𝑗 then form a basis of ℒ(𝐻). Define

vectorization:
vec : ℒ(𝐻) → 𝐻 ⊗ 𝐻 𝑒𝑖𝑒

𝑇
𝑗 ↦→ 𝑒𝑖 ⊗ 𝑒𝑗

and extend this action linearly to ℒ(𝐻). Partial traces are linear contractions:

tr1(𝑋 ⊗ 𝑌) = tr(𝑋)𝑌 and tr2(𝑋 ⊗ 𝑌) = tr(𝑌)𝑋 for 𝑋, 𝑌 ∈ ℒ(𝐻)

and extend this definition linearly to ℒ(𝐻 ⊗ 𝐻). In wiring calculus these operations
assume the following pictorial form:

vec(𝑋) = 𝑋 and tr1(𝑇) = 𝑇 , tr2(𝑇) = 𝑇

3

1. Verify the following formulas with and without wiring calculus. Fix 𝑋, 𝑌 , 𝑍 ∈
ℒ(𝐻). Then,

vec(𝑋𝑌 𝑍) =𝑋 ⊗ 𝑍𝑇 vec(𝑌),
tr1(vec(𝑋)vec(𝑌)*) =𝑋𝑌 *,

tr2(vec(𝑋)vec(𝑌)*) =(𝑌 *𝑋)𝑇 ,

where 𝑋𝑇 is the transpose of 𝑋 (with respect to the designated matrix basis
𝑒𝑖𝑒

𝑇
𝑗) and 𝑋* = �̄�𝑇 is the (basis-independent) adjoint.

2. Purification: Let 𝑋 ∈ ℒ(𝐻) be a positive semidefinite matrix. Show that there
exists a tensor product 𝑥 ∈ 𝐻 ⊗ 𝐻 such that

𝑋 = tr2(𝑥𝑥*).

Context: In quantum mechanics, partial traces correspond to marginalization
(ignore one part of a joint probability distribution). Every density matrix 𝜌 ∈
𝒮(H𝑑) corresponds to the marginalization of a larger quantum state that is pure.

3. Schmidt-decomposition: Show that every 𝑡 ∈ 𝐻 ⊗ 𝐻 can be expressed in the form

𝑡 =
𝑟∑︁

𝑖=1
𝜎𝑖𝑢𝑖 ⊗ 𝑣𝑖,

for positive numbers 𝜎1, . . . , 𝜎𝑟 and orthonormal sets {𝑢1, . . . , 𝑢𝑟}, {𝑣1, . . . , 𝑣𝑟} ⊂
𝐻.

4 Unitary operator bases and Bell basis measurements (optional)
This exercise gathers auxiliary results that are essential for quantum teleportation (next
exercise). A proof of these relations is optional!

Let 𝑒1, . . . , 𝑒𝑑 be a designated orthonormal basis of 𝐻 = C𝑑. For 𝑝, 𝑞 ∈ [𝑑] =
{1, . . . , 𝑑} define the following operators

𝑋𝑞𝑒𝑘 = 𝑒𝑘⊕𝑞 and 𝑍𝑝𝑒𝑘 = 𝜔𝑝𝑘𝑒𝑘 for all 𝑘 ∈ [𝑑]

and extend this action linearly to 𝐻. Here ⊕ denotes addition modulo 𝑑 and 𝜔 =
exp(2𝜋𝑖/𝑑) is a 𝑑-th root of unity. Combine both to obtain

𝑉𝑝,𝑞 = 𝑍𝑝𝑋𝑞 for all 𝑝, 𝑞 ∈ [𝑑].

1. Unitary operator basis: Each 𝑉𝑝,𝑞 ∈ ℒ(𝐻) is unitary and moreover,
(︀
𝑉 (𝑝, 𝑞), 𝑉 (𝑝′, 𝑞′)

)︀
= tr

(︁
𝑉 (𝑝, 𝑞)†𝑉 (𝑝′, 𝑞′)

)︁
= 𝑑𝛿𝑝,𝑝′𝛿𝑞,𝑞′ .

2. Mixing property for unitary operator bases:

1
𝑑2

∑︁

𝑝,𝑞∈[𝑑]
𝑉 *

𝑝,𝑞𝑋𝑉𝑝,𝑞 = tr(𝑋)
𝑑

I for all 𝑋 ∈ H𝑑. (1)

4

3. Bell basis measurements: Define Ω = 𝑑−1vec(I)vec(I)* ∈ H𝑑 ⊗ H𝑑 and set

𝐻𝑝,𝑞 = (𝑉 (𝑝, 𝑞) ⊗ I)Ω(𝑉 (𝑝, 𝑞)* ⊗ I). (2)

This defines a family of 𝑑2 mutually orthogonal rank-one projectors on H𝑑 ⊗ H𝑑.
Hence, {𝐻𝑝,𝑞 : 𝑝, 𝑞 ∈ [𝑑]} is a valid quantum measurement for joint quantum
states defined on S

(︁
H𝑑 ⊗ H𝑑

)︁
.

5 Quantum teleportation
The concept of entanglement is the basis of several surprising “quantum technologies”.
Quantum teleportation is a process by which a quantum state 𝜌 ∈ S(H𝑑) can be
transmitted (“teleported”) from one location to another. To understand it, we need
two additional facts from quantum information theory. We refer to Watrous’ lecture
notes (Lecture 3) for details.

Fact 5.1 (Partial measurement). Let 𝜌 ∈ S
(︁
H𝑑 ⊗ H𝑑′)︁ be a joint quantum state and

let {𝐻𝑎 : 𝑎 ∈ 𝐴} ⊂ H𝑑 be a partial measurement on the first system only. Then, the
probability of measuring outcome 𝑎 ∈ 𝐴 is

Pr[𝑎|𝜌] = tr(𝐻𝑎 ⊗ I𝜌). (3)

Conditioned on obtaining outcome 𝑎 ∈ 𝐴, the surviving quantum state on the second
system becomes

𝜎 = 1
tr(𝐻𝑎 ⊗ I𝜌)tr1(𝐻𝑎 ⊗ I𝜌) ∈ 𝒮(H𝑑).

Fact 5.2 (Quantum circuit). Quantum systems can evolve with time: 𝜌(initial) ↦→ 𝜌(final).
The most basic evolution is a unitary map 𝜌(final) = 𝑈𝜌(initial)𝑈

*, where 𝑈 ∈ U(𝑑) is
a unitary operator. Such unitary evolutions do not change the defining properties of
quantum states and form the basis of quantum processing technologies. This is why we
also call them quantum circuits.

Suppose that two parties (Alice and Bob) are at very distant locations, but share a
bipartite, entangled state Ω ∈ S(H𝑑 ⊗H𝑑). One half is with Alice, while one half is with
Bob. Alice can then use her half of this joint entangled state to “teleport” an arbitrary
quantum state 𝜌 ∈ S(H𝑑) from her location to Bob. The protocol is as follows:

(i) Alice prepares the state 𝜌 ∈ S(H𝑑) she wants to transmit. She jointly measures 𝜌
and her half of the entangled state in the Bell basis (2).

(ii) She records the observed measurement outcome (𝑝0, 𝑞0) ∈ [𝑑] × [𝑑] and sends these
numbers to Bob via a classical communication channel.

(iii) Upon receiving (𝑝0, 𝑞0), Bob applies the quantum circuit 𝜌(final) = 𝑉𝑝0,𝑞0𝜌(initial)𝑉
*

𝑝0,𝑞0
to his half of the entangled state Ω.

5

𝜌

Ω

𝐻𝑎 =

𝜎𝑎

Figure 1 Schematic depiction of the first step in the quantum teleportation procedure. Alice
(top) and Bob (bottom) share a entangled state Ω. Alice performs a Bell basis measurement
𝐻𝑎 (with 𝑎 = (𝑝, 𝑞)) on 𝜌 and her half of Ω. This affects Bob’s part of Ω which gets
transformed into a novel quantum state 𝜎𝑎. Since Alice performs a measurement, her
quantum systems cease to exist.

This protocol perfectly transfers Alice’s initial quantum state 𝜌 to Bob. Although, Alice’s
measurement outcome is random, the entire teleportation procedure is deterministic.
Bob’s action depends on the outcome of Alice’s measurement and perfectly corrects it for
every possible measurement outcome. We refer to Figure 1 for a pictorial representation.

1. Show that the probability outcome distribution for Alice’s measurement is flat:
Pr[(𝑝, 𝑞)|𝜌] = 1/𝑑2 for all 𝑝, 𝑞 ∈ [𝑑].
Hint: Start with the schematic diagram of the protocol in Figure 1. Evaluate
formula (3) by inserting Wiring formulas for Ω, 𝐻𝑝,𝑞 and contracting lines.

2. Condition on Alice measuring (𝑝0, 𝑞0). Show that Bob’s half of the maximally
entangled state necessarily transforms into 𝑉 *

𝑝0,𝑞0𝜌𝑉𝑝0,𝑞0 ∈ S(H𝑑).
3. Prove the correct working of the quantum teleportation protocol, regardless of

Alice’s measurement outcome.
4. The transmission of 𝜌 from Alice to Bob happens instantaneously – regardless of

the distance between them. This seemingly contradicts causality – Information can
at most travel with the speed of light. Such apparent implications of entanglement
greatly worried scientists for decades. Argue that there is no need to worry:
Quantum teleportation does not violate causality (in expectation).
Hint: Use the mixing property (1) of unitary operator bases and flatness of Alice’s
measurement outcome distribution.

Homework II
hand-in date: May 13th, 2019

ACM 270-1, Spring 2019
Richard Kueng and Joel Tropp
April 29, 2019

1 Almost all pure states are maximally entangled
The purpose of this exercise is to prove the following famous result regarding pure state
entanglement.

Theorem 1.1 (Most pure states are almost maximally entangled). Set 𝐻1 = C𝑑1 and
𝐻2 = C𝑑2. Choose a joint pure quantum state 𝜌 = 𝑢𝑢* uniformly from the complex
unit sphere S(𝐻1 ⊗ 𝐻2) ≃ S𝑑1𝑑2−1. Then, for any 𝜀 > 0:

Pr𝑢∼S(𝐻1⊗𝐻2)

[︃⃦⃦
⃦⃦tr2(𝑢𝑢*) − 1

𝑑1
I
⃦⃦
⃦⃦

1
≥
√︃

𝑑1
𝑑2

+ 𝜀

]︃
≤ 2 exp

(︃
𝑑1𝑑2𝜀2

18𝜋3

)︃
.

This is a consequence of Haar integration and concentration of measure:

Theorem 1.2 (Levi’s Lemma). Let 𝑓 : S2𝑛−1 → R be a Lipschitz-continuous function
on the real-valued unit sphere, i.e. there is a constant 𝐿 > 0 such that |𝑓(𝑥) − 𝑓(𝑦)| ≤
𝐿‖𝑥 − 𝑦‖ℓ2 for any 𝑥, 𝑦 ∈ S2𝑛−1. Then, for any 𝜀 > 0

Pr𝑥∼S2𝑛−1 [|𝑓(𝑥) − E𝑥𝑓(𝑥)| ≥ 𝜀] ≤ 2 exp
(︃

− 2𝑛𝜀2

9𝜋3𝐿2

)︃
.

1. Use Haar-integration and ‖𝑋‖2
2 = tr(𝑋2) to show that

E𝑢

⃦⃦
⃦⃦tr2(𝑢𝑢*) − 1

𝑑1
I
⃦⃦
⃦⃦

2

2
≤ 1

𝑑2
.

2. Combine Jensen’s inequality and ‖𝑋‖1 ≤
√︀

dim(𝐻)‖𝑋‖2 for any 𝑋 ∈ ℒ(𝐻) to
conclude

E𝑢

⃦⃦
⃦⃦tr2(𝑢𝑢*) − 1

𝑑1
I
⃦⃦
⃦⃦

1
≤
√︃

𝑑1
𝑑2

.

3. Use Levi’s Lemma to prove Theorem 1.1. Hint: find an isometric embedding of
the complex unit sphere S𝐷−1 into the real-valued unit sphere S2𝐷−1.

2 Quadrature formulas for Haar integration
Haar integration provides closed-form expressions for all moments of the uniform
distribution over the complex unit sphere:

∫︁

S𝑑−1
d𝜇(𝑣)(𝑣𝑣*)⊗𝑘 =

(︃
𝑑 + 𝑘 − 1

𝑑

)︃−1

𝑃∨𝑘 for all 𝑘 ∈ N.

Full knowledge of all moments is often not necessary in concrete applications. Oftentimes,
control of the first 𝑡 moments suffices.

2

Definition 2.1. A complex projective 𝑡-design is a finite set of 𝑁 unit vectors 𝑤1, . . . , 𝑤𝑁 ⊆
S𝑑−1 such that

1
𝑁

𝑁∑︁

𝑖=1
(𝑤𝑖𝑤

*
𝑖)⊗𝑡 =

∫︁

S𝑑−1
d𝜇(𝑣)(𝑣𝑣*)⊗𝑡.

It is instructive to think of 𝑡-designs as quadrature rules for the complex unit sphere.
These finite point sets approximate the uniform measure up to 𝑡-th moments. They are
also the natural extension of 𝑡-wise independent functions to the complex unit sphere.

1. Show that every 𝑡-design is also a 𝑡′-design with 𝑡′ ≤ 𝑡.
2. Let 𝑤1, . . . , 𝑤𝑁 ∈ S𝑑−1 be arbitrary. Show that for any 𝑡 ∈ N,

𝐹𝑡(𝑤1, . . . , 𝑤𝑁) = 1
𝑁2

𝑁∑︁

𝑖,𝑗=1
|⟨𝑤𝑖, 𝑤𝑗⟩|2𝑡 ≥

(︃
𝑑 + 𝑡 − 1

𝑡

)︃−1

(Welch bound)

with equality if and only if 𝑤1, . . . , 𝑤𝑁 constitutes a 𝑡-design.
Hint: Compute the squared Frobenius norm-difference between the frame operator
𝑁−1∑︀𝑁

𝑖=1(𝑤𝑖𝑤
*
𝑖)⊗𝑡 and its Haar-uniform counterpart.

3. Show that every orthonormal basis of C𝑑 is a 1-design
4. Two orthonormal bases 𝑏1, . . . , 𝑏𝑑 and 𝑐1, . . . , 𝑐𝑑 of C𝑑 are mutually unbiased1

if |⟨𝑏𝑖, 𝑐𝑖⟩|2 = 𝑑−1 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑑. It is known that at most 𝑑 + 1 pairwise
mutually unbiased bases can exist in any dimension 𝑑. Show that such maximal
sets of mutually unbiased bases form a 2-design of cardinality 𝑁 = (𝑑 + 1)𝑑.
Context: Explicit constructions are known for prime power dimensions 𝑑 = 𝑝𝑛.
In contrast, still very little is known about maximal sets of MUBs in composite
dimensions (including 𝑑 = 6).

5. Let 𝑣1, . . . , 𝑣𝑁 ⊂ S𝑑−1 be a 4-design. Show that
{︁

𝑑
𝑁 𝑣𝑖𝑣

*
𝑖 : 1 ≤ 𝑖 ≤ 𝑁

}︁
does

constitute a valid quantum measurement. Moreover, show that this fixed quantum
measurement “almost” achieves the Helstrom bound for successfully distinguishing
states that have low rank. The optimal probability of correctly distinguishing two
states with a single 4-design measurement obeys

𝑝succ ≥ 1
2 + ‖𝜌 − 𝜎‖1

3
√︀

rank(𝜌 − 𝜎)
for all 𝜌, 𝜎 ∈ S

(︁
H𝑑
)︁
.

Hint: Apply the maximum likelihood rule to the classical probability distributions
over potential outcomes. Then, rewrite this expression as the expected absolute
value of a scalar random variable 𝑆 and apply the following useful inequality by
Berger: E|𝑆| ≥

√︁
E[𝑆2]3/E[𝑆4].

6. Show that a 2-design measurement does not allow for drawing comparable conclu-
sions. Hint: use a mutually unbiased basis measurement and carefully pick pure
states 𝜌, 𝜎 to minimize the success probability.

1A prominent example are the standard and Fourier bases, respectively.

3

3 Unital quantum channels
Definition 3.1. Set 𝐻1 = C𝑑1 and 𝐻2 = C𝑑2 A linear map 𝒳 : ℒ(𝐻1) → ℒ(𝐻2) is a unital
quantum channel, if

(i) Trace preservation: tr(𝒳 (𝑋)) = tr(𝑋) for all 𝑋 ∈ ℒ(𝐻1),
(ii) Unitality: 𝒳 (I𝐻1) = I𝐻2 , where I𝐻𝑖 ∈ ℒ(𝐻𝑖) denote the identity operators on 𝐻1

and 𝐻2,
(iii) Complete positivity: 𝒳 ⊗ℐ(𝑋) ⪰ 0 for all psd 𝑋 ∈ ℒ(𝐻1 ⊗ 𝐻1). Here ℐ : 𝑋 ↦→ 𝑋

denotes the identity operator on ℒ(𝐻1).

1. Positivity vs. complete positivity: Let 𝒯 : ℒ(𝐻1) → ℒ(𝐻1) be the transpose
channel: 𝑋 ↦→ 𝑋𝑇 . Verify that this linear map is trace preserving, unital and
positive, i.e.𝑋 ⪰ 0 implies 𝒯 (𝑋) ⪰ 0. However, show that the transpose map is
not completely positive.

2. Equivalent characterizations of unital channels. Show that the following four
conditions are equivalent:

(a) unital quantum channels: 𝒳 : ℒ(𝐻1) → ℒ(𝐻2) obeys all requirements from
Definition 3.1.

(b) Kraus-representation: There is 𝑟 ∈ N and operators 𝐴1, . . . , 𝐴𝑟 ∈ ℒ(𝐻1, 𝐻2)
such that

𝒳 (𝑋) =
𝑟∑︁

𝑖=1
𝐴𝑖𝑋𝐴*

𝑖 and
𝑟∑︁

𝑖=1
𝐴𝑖𝐴

*
𝑖 = I𝐻2 ,

𝑟∑︁

𝑖=1
𝐴*

𝑖 𝐴𝑖 = I𝐻1 .

(c) Choi-Jamiolkowski representation: The Choi-matrix

𝐽(𝒳) = 𝒳 ⊗ ℐ
(︁
𝑑−1ΩΩ*

)︁
∈ ℒ(𝐻2 ⊗ 𝐻1) with Ω = vec(I𝐻1)

is psd and obeys tr1(𝐽(𝒳)) = 𝑑−1
1 I𝐻1 , as well as tr2((𝐽(𝒳)) = 𝑑−1

2 I𝐻2 .
(d) Stinespring representation: there exists 𝐻3 = C𝑑3 and a linear isometry

𝑈 : 𝐻1 → 𝐻2 ⊗ 𝐻3 such that 𝒳 (𝑋) = tr3(𝑈𝑋𝑈*).

Context: The lack of a quantum Birkhoff-von Neumann theorem renders the study
of general quantum evolutions somewhat cumbersome. The fact that positivity does
not imply complete positivity (see 1.) does not make things easier, either. The four
equivalent characterizations of channels provide different points view with unique
advantages and drawbacks: (a) summarizes the three core properties of unital channels.
(b) The Kraus representation is the easiest way to construct unital quantum channels in
practice. (c) The Choi-Jamiolkowski representation is a linear bijection that pinpoints
the convex structure of unital quantum maps. They are in one-to-one relation to an
affine slice of the cone of psd operators in ℒ(𝐻2 ⊗𝐻1). It also provides a tractable way to
check complete positivity. (d) The Stinespring representation provides a nice conceptual
interpretation of general unital channels. They arise from considering an isometric
evolution on a larger joint quantum system (system+environment) and subsequently
tracing out the environment (marginalization).

4

4 Average channel fidelity and twirling
Set 𝐻 = C𝑑 and let 𝒳 : ℒ(𝐻) → ℒ(𝐻) be a unital quantum channel. Define the average
fidelity:

𝑓(𝒳) =
∫︁

S𝑑−1
d𝜇(𝑣)⟨𝑣, 𝒳 (𝑣𝑣*)𝑣⟩

1. Let 𝒳 (𝑋) = ∑︀𝑟
𝑖=1 𝐴𝑖𝑋𝐴*

𝑖 be a Kraus representation of 𝒳 . Show that

𝑓(𝒳) = 1
(𝑑 + 1)𝑑

(︃
𝑑 +

𝑟∑︁

𝑖=1
|tr(𝐴𝑖)|2

)︃
.

2. Conclude that 𝑓(𝒳) ∈ [︀(𝑑 + 1)−1, 1
]︀

and find (unital) channels that saturate both
bounds.

3. Define the twirl of 𝒳 to be the following channel:

𝒯𝒳 =
∫︁

d𝑈𝒰* ∘ 𝒳 ∘ 𝒰 i.e. 𝒯𝒳 (𝑋) =
∫︁

d𝑈𝑈*𝒳 (𝑈𝑋𝑈*)𝑈 .

Show that twirling turns every unital channel 𝒳 into a depolarizing channel:

𝒯𝒳 (𝑋) = 𝒟𝑝(𝑋) = 𝑝𝑋 + (1 − 𝑝)I/𝑑 with 𝑝 = 𝑑𝑓(𝒳) − 1
𝑑 − 1 .

Hint: Use the following generalization of the Haar-integral formula for tensor
products: For any 𝐴 ∈ ℒ(︀𝐻⊗2)︀,

∫︁
d𝑈𝑈⊗2𝐴(𝑈*)⊗2 =

(︃
𝑑 + 1

2

)︃−1

tr(𝑃∨2𝐴)𝑃∨2 +
(︃

𝑑

2

)︃−1

tr(𝑃∧2𝐴)𝑃∧2 .

4. (optional:) show that the composition of two depolarizing channels 𝒟𝑝 and 𝒟𝑞 is
again a depolarizing channel: 𝒟𝑝 ∘ 𝒟𝑝 = 𝒟𝑝𝑞.

Context: the average fidelity is a popular benchmark for actual implementation
of quantum circuits in the lab: apply a circuit, reverse it and check how close the
resulting empirical average fidelity is to one. It is easy to check that twirling leaves
the average fidelity invariant, but reduces any channel to a depolarizing channel which
is much easier to analyze. This trick is at the basis of several popular techniques for
benchmarking concrete implementations of quantum circuits. For instance, the popular
technique of randomized benchmarking cleverly combines features 3 and 4 to estimate
the average fidelity in an extremely noise-resiliant fashion.

5 One-clean qubit
Typical quantum circuits require initializing a set of qubits in a pure product state. The
one-clean qubit model substantially weakens this requirement: only one qubit must be
initialized in a product state, the remaining 𝑛 qubits are maximally mixed (“garbage”).
Perhaps surprisingly, a single clean qubit suffices to do useful quantum computations.
The following protocol shows how to efficiently compute traces of big tensor-product
unitaries 𝑈 ∈ ℒ(𝐻⊗𝑛). Set 𝐻 = C2 and consider the following computation that
requires 𝑛 + 1 qubits:

5

(i) Initialize: 𝜌in = 𝑒0𝑒*
0 ⊗

(︁
1
2I
)︁⊗𝑛

.

(ii) Apply a Hadamard gate to the first qubit: 𝜌1 = 𝐻 ⊗ I⊗𝑛𝜌in𝐻* ⊗ I⊗𝑛.
(iii) Apply a conditional unitary circuit to all 𝑛 + 1 qubits:

𝐶𝑈𝑒0 ⊗ 𝑥 = 𝑒0 ⊗ 𝑥, 𝐶𝑈𝑒1 ⊗ 𝑥 = 𝑒1 ⊗ 𝑈𝑥 for all 𝑥 ∈ 𝐻⊗𝑛

and linearly extended to 𝐻⊗(𝑛+1): 𝜌2 = 𝒞𝒰(𝜌1) = 𝐶𝑈𝜌1𝐶𝑈*.
(iv) Apply a Hadamard gate to the first qubit: 𝜌3 = 𝐻 ⊗ I⊗𝑛𝜌2𝐻* ⊗ I⊗𝑛.
(v) Perform the following two-outcome quantum measurement:

𝐻0 = 𝑒0𝑒*
0 ⊗ I⊗𝑛, 𝐻1 = 𝑒1𝑒*

1 ⊗ I⊗𝑛 ∈ ℒ
(︁
𝐻⊗(𝑛+1)

)︁
.

1. Draw a (wiring) circuit diagram for this quantum computation.
2. Show that the probability of obtaining outcome 0 is in one-to-one correspondence

with the real-part of the trace of 𝑈 :

Pr[0|𝜌3] = 1
2 + Re(tr(𝑈))

2𝑛+1 and Pr[1|𝜌3] = 1
2 − Re(tr(𝑈))

2𝑛+1 .

3. How must the quantum computation be altered to estimate the imaginary part of
the trace instead?

Context (the power of one-clean-qubit): The unitary matrix 𝑈 acts on the 2𝑛-
dimensional space 𝐻⊗𝑛. A naive computation of the trace therefore requires exponential
runtime (in 𝑛) on a classical computer. The one-clean qubit circuit above provides an
alternative means to estimate this trace. It is “efficient”, whenever 𝑈 can be implemented
in polynomial circuit size. Such short-sized unitary matrices occur naturally in the
study of knots and are related to evaluating certain Jones polynomials (see e.g. Shor and
Jordan, Estimating Jones Polynomials is a Complete Problem for One Clean Qubit).
Evaluating these Jones polynomials is believed to be very difficult for classical computers
(NP-hard).

The relationship between DQC1 (the official term for problems that can be solved
efficiently using one-clean-qubit-architectures) and BQP (the class of problems that can
be solved efficiently using orthodox quantum computations) is still not fully understood.

Homework III
hand-in date: June 3rd, 2019

ACM 270-1, Spring 2019
Richard Kueng and Joel Tropp
May 21, 2019

1 Tensor rank
Let 𝑒1, 𝑒2 denote the standard basis in F2 (F = R, or F = C) and consider the following
tensor on F2 ⊗ F2 ⊗ F2 that is defined in terms of its frontal slices:

𝑡1 =
(︃

1 0
0 1

)︃
, 𝑡2 =

(︃
0 1

−1 0

)︃
.

1. Show that this tensor has rank-two over F = C.
2. Show that this tensor has rank-three over F = R and argue why an improvement

to rank-two is impossible over the real numbers.

2 Strassen’s algorithm
Apply Strassen’s algorithm for multiplying two 2×2 matrices recursively to compute the
product of two 4 × 4 matrices. Whenever possible, use linearity of the matrix product
to remove superfluous contributions and verify that the final result remains correct.

3 Matrix multiplication tensors

Set
{︁

𝑋𝑖
𝑗 = 𝑒𝑖𝑒

𝑇
𝑗

}︁
: 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚] (standard basis of C𝑛×𝑚),

{︁
𝑌 𝑗

𝑘 = 𝑒𝑗𝑒𝑇
𝑘

}︁
: 𝑗 ∈

[𝑚], 𝑘 ∈ [𝑝] (standard basis of C𝑚×𝑝), as well as
{︁

𝑍𝑘
𝑖 = 𝑒𝑘𝑒𝑇

𝑖

}︁
: 𝑘 ∈ [𝑝], 𝑖 ∈ [𝑛]

(standard basis of C𝑝×𝑛) and define

⟨𝑛, 𝑚, 𝑝⟩ =
𝑛∑︁

𝑖=1

𝑚∑︁

𝑗=1

𝑚∑︁

𝑘=1
𝑋𝑖

𝑗 ⊗ 𝑌 𝑗
𝑘 ⊗ 𝑍𝑘

𝑖 .

1. Verify that ⟨𝑛, 𝑚, 𝑝⟩ encodes matrix multiplication as a tensor. More precisely,
verify

tr1,2(⟨𝑛, 𝑚, 𝑝⟩*𝐴 ⊗ 𝐵) = 𝐴𝐵 ∈ C𝑛×𝑝 for any 𝐴 ∈ C𝑛×𝑚, 𝑌 ∈ C𝑚×𝑝.

2. Verify Bini’s identity

𝜀
(︀
𝑋1

1 ⊗ 𝑌 1
1 ⊗ 𝑍1

1 + 𝑋1
1 ⊗ 𝑌 1

2 ⊗ 𝑍2
1 + 𝑋1

2 ⊗ 𝑌 2
1 ⊗ 𝑍1

1 + 𝑋1
2 ⊗ 𝑌 2

2 ⊗ 𝑍2
1 + 𝑋2

1 ⊗ 𝑌 1
1 ⊗ 𝑍1

2 + 𝑋2
1 ⊗ 𝑌 1

2 ⊗ 𝑍2
2
)︀

+𝜀2(︀𝑋1
1 ⊗ 𝑌 2

2 ⊗ 𝑍2
1 + 𝑋1

1 ⊗ 𝑌 1
1 ⊗ 𝑍1

2 + 𝑋1
2 ⊗ 𝑌 2

1 ⊗ 𝑍2
2 + 𝑋2

1 ⊗ 𝑌 2
1 ⊗ 𝑍2

2
)︀

=
(︀
𝑋1

2 + 𝜀𝑋1
1
)︀

⊗
(︀
𝑌 1

2 + 𝜀𝑌 2
2
)︀

⊗ 𝑍2
1

+
(︀
𝑋2

1 + 𝜀𝑋1
1
)︀

⊗ 𝑌 1
1 ⊗

(︀
𝑍1

1 + 𝜀𝑍1
2
)︀

+𝑋1
2 ⊗ 𝑍1

2 ⊗
(︀
𝑍1

1 + 𝑍2
1 + 𝜀𝑍2

2
)︀

−𝑋2
1 ⊗

(︀
𝑌 1

1 + 𝑌 1
2 + 𝜀𝑌 2

1
)︀

⊗ 𝑍1
1

+
(︀
𝑋1

2 + 𝑋2
1
)︀

⊗
(︀
𝑌 1

2 + 𝜀𝑌 2
1
)︀

⊗
(︀
𝑍1

1 + 𝜀𝑍2
2
)︀
.

2

3. Relate the left hand side of Bini’s identity to the following partial matrix multipli-
cation: (︃

𝑎11 𝑎12
𝑎21 0

)︃(︃
𝑏11 𝑏12
𝑏21 𝑏22

)︃
=
(︃

𝑐11 𝑐12
𝑐21 𝑐22

)︃

4. What is the border rank of this partial matrix multiplication?

Context: The exact rank (which equals the border rank) of the full 2 × 2 matrix
multiplication tensor is eight. The border rank associated with Bini’s partial matrix
multiplication tensor is much lower. Recursive arguments – similar to the one we did
for Strassen – show that this border rank identity yields the following upper bound on
the exponent of matrix multiplication: 𝜔 ≤ 3 log6 5 ≃ 2.70. This was the first genuine
improvement over Strassen’s algorithm for matrix multiplication.

4 Tensor trains/ Matrix product states
We consider translationally invariant matrix product states for tensor products 𝑡 ∈(︁
C𝑑
)︁⊗𝑁

with “bond” (inner) dimension 𝐷. These are described by a single order-three
tensor 𝐴 ∈ C𝐷×𝐷 ⊗ C𝑑 (one 𝐷 × 𝐷 matrix 𝐴𝑖 for each index 𝑖 ∈ [𝑑]). We also allow
ourself the freedom of including an additional 𝐷 × 𝐷 matrix 𝐵 at the end of the tensor
train:

𝑡 =
𝑑∑︁

𝑖1,...,𝑖𝑁 =1
tr(𝐴𝑖1𝐴𝑖2 · · · 𝐴𝑖𝑁 𝐵)𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑁 ∈

(︁
C𝑑
)︁⊗𝑁

.

For 𝑁 = 8, the wiring formalism of such a construction assumes the following form:

𝑡 = 𝐴 𝐴 𝐴 𝐴 𝐴 𝐴 𝐴 𝐴 𝐵

1. Set 𝑑 = 2, 𝐷 = 2, 𝑁 ∈ N arbitrary and compute the tensor train associated with

𝐴1 =
(︃

1 0
0 1

)︃
, 𝐴2 =

(︃
0 1
0 0

)︃
, 𝐵 =

(︃
0 1
1 0

)︃
.

2. Set 𝑑 = 2, 𝐷 = 2, 𝑁 ∈ N arbitrary and compute the tensor train associated with

𝐴1 =
(︃

1 0
0 1

)︃
, 𝐴2 =

(︃
0 1
1 0

)︃
, 𝐵 =

(︃
1 0
0 0

)︃
.

3. Fix 𝑑 = 𝐷, as well as 𝑁 ∈ N arbitrary and compute the tensor train defined by 𝑑
shift matrices 𝐴1, . . . , 𝐴𝑑 ∈ C𝑑×𝑑 and 𝐵 = 𝑒𝑙𝑒

𝑇
1 for arbitrary 𝑙 ∈ [𝑑]. The shift

matrices are defined by their action on standard basis vectors: 𝐴𝑞𝑒𝑘 = 𝑒(𝑘−1)⊕𝑞

and linearly extended (see also HW1). Here, ⊕ denotes addition modulo 𝑑.

3

5 Alternating least squares (ALS) algorithms for computing the CP
decomposition

The CP decomposition factorizes an order 𝑁 tensor 𝑡 ∈ R𝑑1 ⊗· · ·⊗R𝑑𝑁 into 𝑅 rank-one
components:

𝑡 =
𝑅∑︁

𝑖=1
𝜆𝑖𝑎

(1)
𝑖 ⊗ · · · ⊗ 𝑎

(𝑁)
𝑖

In the lecture, we saw an iterative algorithm that approximates a CP decomposition of
order-three tensors. Given input rank 𝑅 it sequentially optimized over different tensor
factors, while keeping the remaining factors fixed. Different matriciations of the original
tensor allowed for implementing each optimization efficiently.

1. Generalize this iterative algorithm to tensors of arbitrary order 𝑁 . Write concise
pseudo-code for this procedure.

2. Do a rigorous runtime analysis. How does each iteration scale with the problem
parameters 𝑁 , 𝑑max = max{𝑑1, . . . , 𝑑𝑁 } and 𝑅?

3. (optional) Implement your pseudo code in your favorite programming language.
Apply it to the tensor from Exercise 1 and check if it can find the right rank
behavior.

	Lecture notes
	Classical probability theory and quantum mechanics
	Tensor products
	Wiring calculus and entanglement
	Symmetric and antisymmetric tensors
	Haar integration
	Entanglement is ubiquitous
	Classical reversible circuits
	Quantum circuits and quantum computing
	Matrix rank
	Tensor rank
	Strassen's algorithm for matrix multiplication
	Tensorial aspects of matrix multiplication
	The CP decomposition for tensors
	The Tucker decomposition for tensors
	Tensor train decompositions I
	Tensor train decomposition II
	Tensor train algorithms (DMRG lite)

	Exercises
	Homework I
	Homework II
	Homework III

